Linux操作系统中,图像处理是一个非常重要的应用领域,而OpenCV作为一个强大的开源图像处理,为开发人员提供了丰富的功能和工具。在Linux系统上使用OpenCV进行图像处理操作是非常常见的,可以相对轻松地实现各种图像处理任务。 OpenCV是一个跨平台的计算机视觉,包含各种用于图像处理和计算机视觉方面的函数和工具。在Linux系统上,通过安装OpenCV,即可在C++,Python
原创 2024-05-30 09:58:54
92阅读
图像编程的好帮手-四大图像OpenCV/FreeImage/CImg/CxImage  1.对OpenCV 的印象:功能十分的强大,而且支持目前先进的图像处理技术,体系十分完善,操作手册很详细,手册首先给大家补计算机视觉的知识,几乎涵盖了近10年内的主流算法;然后将图像格式和矩阵运算,然后将各个算法的实现函数。 我用它来做了一个Harris角点检测器和Canny边缘检测器,
目录一、图像概述:1.图像起源:1.1 什么是图像:1.2 模拟图像和数字图像:2.数字图像的表示:2.1 位数:2.2 图像分类:二、OpenCV概述:1.OpenCV概述:2.OpenCV-Python:3.OpenCV部署:三、OpenCV模块:一、图像概述:1.图像起源:1.1 什么是图像:        图像
现在就业人数最多的是计算机专业,而这个专业的很多人都是做深度学习,或者行为识别这块,这讲主要介绍一下很常用的一个工具——opencv,很多人说,这是一个程序,有些人这是很多算法,其实我感觉描述的都有点片面性,它其实更像一个工具,废话少说,进主题: 图像处理是计算机对图像进行一系列分析,然后得到想要的结果,图像处理一般指工业相机、摄像机什么的,在现在智慧城市,智慧工厂、智能机器人发展的快时代,图像
   1、cvLoadImage:将图像文件加载至内存; 2、cvNamedWindow:在屏幕上创建一个窗口; 3、cvShowImage:在一个已创建好的窗口中显示图像; 4、cvWaitKey:使程序暂停,等待用户触发一个按键操作; 5、cvReleaseImage:释放图像文件所分配的内存; 6、cvDestroyWindow:销毁显示图像文件的窗
目录2. 图像处理2.1 图像阙值2.2 图像平滑2.3 形态学操作2.3.1 腐蚀操作2.3.2 开运算与闭运算2.3.3 梯度运算2.3.4 礼帽与黑帽2.4 图像梯度2.4.1 Sobel算子2.4.2 Scharr算子与Lapkacian算子2.5 边缘检测2.6 图像金字塔2.7 轮廓检测2.7.1 图像轮廓2.7.2 绘制轮廓2.7.3 轮廓近似2.7.4 边界矩形2.7.5 外接圆
 实验一 熟悉OpenCV环境和基本操作一、实验目的 熟悉OpenCV运行环境,了解图像的基本操作及直方图均衡化。 二、实验内容 一个简单的图像处理例子。 代码如下:#include <opencv2/opencv.hpp> using namespace cv; int main( ) { Mat img = imread("result1.bmp");
在进行图像处理时,你迟早会发现需要转换图像——一般通过应 用艺术滤镜、推断某些部分、混合两幅图像,或者任何你能够想到的 方法完成。本章将介绍一些可以转换图像的技术。最后,你还能够执 行图像锐化、标记主体的轮廓、利用线段检测器检测人行横道。 本章将介绍以下主题: ·在不同颜色模型之间进行图像转换。 ·理解频率和傅里叶变换在图像处理中的重要性。 ·应用高通滤波器(High-Pass Filter,HP
文章目录图像的基本表示方法二值图像灰度图像彩色图像像素处理二值图像及灰度图像彩色图像使用 numpy.array 访问像素二值图像及灰度图像彩色图像感兴趣区域(ROI)通道操作通道拆分通过索引拆分通过函数拆分通道合并获取图像属性 本章主要介绍图像的基本表示方法、像素的访问和操作、感兴趣区域处理、通道处理等知识点。需要强调的是,使用面向 Python 的 OpenCVOpenCV for Pyt
1、图像相关知识 1.1、模拟图像和数字图像 模拟图像又称连续图像,它通过某种物理量(如光、电等)的强弱变化来记录图像亮度信息,所以是连续变换的,容易受干扰。 数字图像亮度用离散数值表示。 1.2、数字图像的表示 计算机采用0/1编码的系统,数字图像也是利用0/1来记录信息,我们平常接触的图像都是8 ...
转载 2021-09-05 11:00:00
995阅读
2评论
1.图像的缩放:就是按照所给的图像图像方法缩小 #缩放有两种:一种是绝对尺寸,一种是相对尺寸 import numpy as np import cv2 as cv import matplotlib.pyplot as plt #读取图像 img1 = cv.imread('image1.jpg
原创 2022-10-21 10:11:33
188阅读
目录VS2019 + opencv环境安装OpenCV简单介绍(摘抄百度百科)知识点总结(主要总结的是图像分割)1.图像的加载、修改、保存2.矩阵的掩模操作3. Mat的简单用法4. 读写像素5. 图像混合6. 调整图像亮度和对比度7. 绘制形状和文字 VS2019 + opencv环境安装1) 本人的环境是VS2019 + OpenCV VS2019 社区版就够了(自己注册微软账号) 下载链接
文章目录一、图像的基础操作1. 图像的IO操作1.1 读取图像1.2 显示图像1.3 保存图像1.4 总结2. 绘制几何图形2.1 绘制直线2.2 绘制圆形2.3 绘制矩形2.4 向图像中添加文字2.5 效果展示3. 获取并修改图像中的像素点4. 获取图像的属性5. 图像通道的拆分与合并6. 色彩空间的改变二、算数操作1. 图像的加法2. 图像的混合 一、图像的基础操作1. 图像的IO操作这里我
    1、blur     2、GaussianBlur     3、medianBlur     4、bilateralFilter     5、腐蚀和膨胀    
转载 2023-08-13 10:10:34
160阅读
图像处理对于整个图像处理任务来讲特别重要。如果我们没有进行恰当的预处理,无论我们有多么好的数据也很难得到理想的结果。本篇是视觉入门系列教程的第二篇。整个视觉入门系列内容如下: 1. 理解颜色模型与在图像上绘制图形(图像处理基本操作)。 2. 基本的图像处理与滤波技术。 3. 从特征检测到人脸检测。 4. 图像分割与分水岭(Watershed)算法(TBU)在边缘和轮廓检测中,噪声对检测的精度有很
转载 2024-08-22 16:01:22
174阅读
        5、图像滤波(平滑)        图像滤波(平滑),即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像处理中不可缺少的操作,其处理效果的好坏将直接影响到后续图像处理和分析的有效性和可靠性。 &nb
1 前言在计算机视觉技术中,阈值处理是一种非常重要的操作,它是很多高级算法的底层处理逻辑之一。比如在使用OpenCV检测图形时,通常要先对灰度图像进行阈值(二值化)处理,这样就得到了图像的大致轮廓,以便于识别图形。在阈值处理中,会将图像的每一个像素值与阈值进行比较,如果小于阈值,则将像素值置为0(黑色),若大于或等于阈值,将像素值置为最大值255(白色)。下边我们一起了解一下OpenCV中的三种阈
文章目录10 膨胀与腐蚀(1)形态学操作(morphology operators)——膨胀、腐蚀(2)相关API(3)动态调整结构元素大小TrackBar11 形态学操作(1)开操作- open(2)闭操作- close(3)形态学梯度- Morphological Gradient(4)顶帽- Tophat(5)黑帽- Blackhat(6)API12 形态学操作应用——提取水平与垂直线(1
        经过前面的讨论,我对Image类进行了优化,代码如下://C#灰度图像处理类,作者:wmesci //unsafe class Image :CriticalHandle, IDisposable { [DllImport("kernel32.dll")] static extern IntP
转载 2024-08-29 16:38:12
107阅读
一、加载、修改、保存图像1、加载图像(cv::imread):imread功能是加载图像文件成为一个Mat对象,第一个参数是图像文件的名称,第二个参数是图像文件的类型。IMREAD_UNCHANGED(<0)表示加载原图,不做处理;IMREAD_GRAYSCALE(0) 表示将原图作为灰度图加载进来;IMREAD_COLOR(>0) 表示把原图作为RGB图像加载进来。注:OpenCV
  • 1
  • 2
  • 3
  • 4
  • 5