一,题目一、利用拉普拉斯滤波器进行锐化处理 1.分别用MATLAB自带的拉普拉斯滤波器以及手工指定的拉普拉斯滤波器来对MATLAB自带的“moon.tif”图像进行锐化处理。 实验原理: 增强问题常常需要工具箱外的滤波器。拉普拉斯算子就是一个很好的例子。工具箱提供了一个大小为33的拉普拉斯滤波器,其中心为-4。通常,若希望得到更加清晰的图像,则需要使用中心为-8、其它值均为1的33等改进的拉普拉斯
      相信看过冈萨雷斯第三版数字图像处理的童鞋都知道,里面涉及到了很多的基础图像处理的算法,今天,就专门借用其中一个混合空间增强的案例,来将常见的几种图像处理算法集合起来,看能发生什么样的化学反应      首先,通过一张图来看下,我们即将需要完成的工作目标       同时,我们也
拉普拉斯算子进行图像增强,以及算法优化 环境:vs2017 + OpenCV3.4.1 步骤: (1)新建工程LapFilter (2)确定项目阶段 (3)FFT变换部分w = getOptimalDFTSize(gray_image.cols);//将输入图像延展到最佳尺寸,用0填充 h = getOptimalDFTSize(gray_image.rows);//将输入图像延展到最佳尺寸,用
文章目录1. 拉普拉斯算子2. 月球图像3. 代码实现4. 遇到问题5. 附代码: 1. 拉普拉斯算子Laplace算子是一种各向同性算子,二阶微分算子,在只关心边缘的位置而不考虑其周围的象素灰度差值时比较合适。Laplace算子对孤立象素的响应要比对边缘或线的响应要更强烈,因此只适用于无噪声图象。存在噪声情况下,使用Laplacian算子检测边缘之前需要先进行低通滤波。所以,通常的分割算法都是
拉普拉斯变换是一种数学积分变换,用于将一个连续时间函数变换为复平面上的函数。它以法国数学家皮埃尔-西蒙·拉普拉斯(Pierre-Simon Laplace)的名字命名。拉普拉斯变换(Laplace Transform)是工程数学中常用的一种积分变换,又名拉氏变换。它是一个线性变换,可将一个有参数实数t(t≥ 0)的函数转换为一个参数为复数s的函数。这种变换在许多工程技术和科学研究领域中有着广泛的应
数学基础       拉普拉斯算子,二阶微分线性算子,为什么上来就学二阶微分算子,前文说过,与一阶微分相比,二阶微分的边缘定位能力更强,锐化效果更好,所以我们来先学习二阶微分算子,使用二阶微分算子的基本方法是定义一种二阶微分的离散形式,然后根据这个形式生成一个滤波模板,与图像卷积。       各向同性滤波器,图像旋转
Opencv拉普拉斯算子——图像增强
转载 2019-10-28 20:09:00
276阅读
15点赞
锐化滤波器锐化处理的主要目的是,突出灰度的过渡部分,增强图像中的细节。空间域像素邻域平均法可以使图像变模糊,均值处理与积分类似,所以锐化处理可以用空间微分(差分)来完成。 对比模糊:模糊(平滑)是去除图像的细节,均值处理。锐化是突出图像的细节,微分(差分)处理。锐化滤波器主要有两种锐化方法:1. 使用二阶微分的图像锐化:拉普拉斯锐化2. 使用一阶微分的图像锐化:梯度锐化Part1. 拉普拉斯锐化
主要内容:图像的表示----介绍图像是如何表示的,以及所有基本操作的作用对象高斯滤波-----滤波操作的原理与应用图像金字塔-----高斯和拉普拉斯边缘检测-----Sobel算子和Laplace算子 1、图像的表示       图像是由一个个的像素表示的,一个图像的像素点可以用 (x,y) 来表示位置,v来表示像素值(灰度图像
数学基础       拉普拉斯算子,二阶微分线性算子,为什么上来就学二阶微分算子,前文说过,与一阶微分相比,二阶微分的边缘定位能力更强,锐化效果更好,所以我们来先学习二阶微分算子,使用二阶微分算子的基本方法是定义一种二阶微分的离散形式,然后根据这个形式生成一个滤波模板,与图像卷积。       各向同性滤波器,图像旋转
1.基本理论   拉普拉斯算子是最简单的各向同性微分算子,具有旋转不变性。一个二维图像函数 的拉普拉斯变换是各向同性的二阶导数,定义为:   为了更适合于数字图像处理,将该方程表示为离散形式:   另外,拉普拉斯算子还可以表示成模板的形式,如图5-9所示。图5-9(a)表示离散拉普拉斯算子的模板,图5-9(b
图像边缘检测的概念和大概原理可以参考我的另一篇博文,链接如下:拉普拉斯算子是最简单的各向同的性二阶微分算子,具有旋转不变性。根据函数微分特性,该像素点值的二阶微分为零的点为边缘点。这样就实现了边缘检测。利用拉普拉斯算子作边缘检测前最好先对图像作一个高斯滤波(高斯滤波见博文),效果会好不少。为什么效果会好不少?边缘检测的算法主要是基于图像强度的一阶和二阶微分操作,但导数通常对噪声很敏感,所以边缘检测
转载 2024-02-29 14:58:24
71阅读
最近在做图像清晰度检测的时候,用到了Laplacian算子,所以系统整理下这方面的相关知识。Laplacce算子是一种各向同性算子,二阶微分算子,在只关心边缘的位置而不考虑其周围的象素灰度差值时比较合适。Laplace算子对孤立象素的响应要比对边缘或线的响应要更强烈,因此只适用于无噪声图象。存在噪声情况下,使用Laplacian算子检测边缘之前需要先进行低通滤波。所以,通常的分割算法都是把Lapl
拉普拉斯变换的定义和收敛域笔者复习时着重强调概念和定义的感性认知,这里只包括拉普拉斯变换的定义和收敛域。拉普拉斯变换的定义拉普拉斯变换的定义来源于傅里叶变换的定义 首先给出傅里叶变换的公式这一对公式的存在是有条件的,即对f(t)是有条件的,要求其绝对可积(必要非充分) 而对于一些绝对不可积信号,他们是一定不存在傅里叶变换的,但是这些信号经过自身与指数信号的衰减信号的乘积得到的新的信号是满足绝对可积
1.拉普拉斯(Laplacian)算子1.1基础介绍最简单的各向同性导数算子是拉普赖算子,其具有旋转不变性,对于两个变量的函数,其定义为,以离散形式表示上述公式为:<br/>x方向有:$\frac{\partial ^2f}{\partial x ^2} = f(x+1, y) + f(x-1, y) - 2f(x,y) = (f(x+1, y) -f(x,y)) - (f(x,y)
利用拉普拉斯算子对模糊图像进行增强 clear all; %利用拉普拉斯算子对模糊图像进行增强 I=imread('rice.png'); subplot(1,2,1);imshow(I); title('原始图像'); I=double(I); %转换数据类型为double双精度型 H=[0 1 0,1 -4 1,0 1 0]; %拉普拉斯算子 J=conv2(I,H,'same');
拉普拉斯变换的定义和收敛域笔者复习时着重强调概念和定义的感性认知,这里只包括拉普拉斯变换的定义和收敛域。拉普拉斯变换的定义拉普拉斯变换的定义来源于傅里叶变换的定义 首先给出傅里叶变换的公式这一对公式的存在是有条件的,即对f(t)是有条件的,要求其绝对可积(必要非充分) 而对于一些绝对不可积信号,他们是一定不存在傅里叶变换的,但是这些信号经过自身与指数信号的衰减信号的乘积得到的新的信号是满足绝对可积
1.边缘检测 (1)Roberts边缘算子 (2)Sobel算子 (3)Prewitt算子 (4)拉普拉斯(Laplacian)算子 (5)LOG(Laplacian-Gauss)算子 (6)坎尼(Canny)算子 (7)利用霍夫(Hough)变换图像分割技术图像分割是把图像分割成若干个特定的、具有独特性质的区域并提取出感兴趣的目标的技术和过程。在对图像的研究和应用中,人们往往仅对图像的某些部分感
Sobel变换和拉普拉斯变换都是高通滤波器。什么是高通滤波器呢?就是保留图像的高频分量(变化剧烈的部分),抑制图像的低频分量(变化缓慢的部分)。而图像变化剧烈的部分,往往反应的就是图像的边沿信息了。1. Sobel算子(主要用于边缘检测) //Sobel变化实例 Mat sobelX; Sobel(image,sobelX,CV_8U,1,0,3,0.4,128); imshow("X
Python OpenCV 365 天学习计划,与橡皮擦一起进入图像领域吧。 Python OpenCV基础知识铺垫高斯金字塔cv2.pyrDown 与 cv2.pyrUp 函数原型拉普拉斯金字塔(Laplacian Pyramid, LP)橡皮擦的小节 基础知识铺垫学习图像金字塔,发现网上的资料比较多,检索起来比较轻松。图像金字塔是一张图像多尺度的表达,或者可以理解成一张图像不同分辨率展示。金字
  • 1
  • 2
  • 3
  • 4
  • 5