# PyTorch 中 MSELoss 和 L1Loss 的对比
在深度学习中,损失函数用于衡量模型预测值与真实值之间的差异。最常见的损失函数包括均方误差损失(Mean Squared Error Loss, MSELoss)和平均绝对误差损失(L1 Loss)。本文将带领你探索如何在 PyTorch 中比较这两种损失函数。
## 流程概述
在进行对比之前,我们需要规划一下流程。以下是实现对
torch.sparse是一个专门处理稀疏张量的模块。通常,张量会按一定的顺序连续地进行存取。但是,对于一个存在很多空值的稀疏张量来说,顺序存储的效率显得较为低下。因此,pytorch推出了稀疏张量的处理模块。在这里,有意义的值被称为specified elements,而无意义的值(空值,通常为0,但是也可以是其他值)则被称为fill value。只有足够稀疏的张量使用这种方式进行存储才能获
转载
2023-09-06 16:31:19
60阅读
文章目录损失函数的定义神经网络的学习为何要设定损失函数?常见的损失函数1. 0-1损失函数(zero-one loss)2. 对数损失函数3. 平方损失函数MSE(均值平方差)4. Hinge 损失函数5. 交叉熵损失函数 (Cross-entropy loss function) 损失函数的定义损失函数,又叫目标函数,是编译一个神经网络模型必须的两个要素之一。另一个必不可少的要素是优化器。损失
衡量预测值与真实值的偏差程度的最常见的loss: 误差的L1范数和L2范数 因为L1范数在误差接近0的时候不平滑,所以比较少用到这个范数 L2范数的缺点是当存在离群点(outliers)的时候,这些点会占loss的主要组成部分。比如说真实值为1,预测10次,有一次预测值为1000,其余次的预测值为1
转载
2018-08-23 21:39:00
271阅读
2评论
损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。模型的结构风险函数包括了经验风险项和正则项,通常可以表示成如下式子:其中,前面的均值函数表示的是经验风险函数,L代表的是损失函数,后面的$\Phi$是
1. 基础介绍简单版SSD网络中的SmoothL1LossLayer层借鉴于Fast R-CNN,用于计算smooth L1损失,其中的光滑L1函数如下:其导函数为:之所以称为光滑L1函数,是因为此函数处处可导,而原L1函数在x=0处是不可导的。smooth L1损失为:其中:
y
原创
2022-02-07 16:25:59
2583阅读
简单版SSD网络中的SmoothL1LossLayer层借鉴于Fast R-CNN,用于计算smooth L1损失,其中的光滑L1函数如下:其导函数为:之所以称为光滑L1函数,是因为此函数处处可导,而原L1函数在x=0处是不可导的。smooth L1损失为:其中:yi=[yi1,yi2,....,yik]Ty_i = [y_{i1},y_{i2},....,y_{ik}]^Tyi=[yi1,yi2,....,yik]T为标签向量;y^i\hat{y}_iy^i为预测向量。带si
原创
2021-06-18 14:10:50
2739阅读
RPN的目标函数是分类和回归损
转载
2022-08-30 10:28:00
75阅读
L1Lossnn.L1Loss 也称为平均绝对误差(Mean Absolute Error,MAE)。它计算预测值与真实值之间的差异(即误差),然后取绝对值并求和,最后除以样本数量得到平均误差。具体来说,对于一批大小为 的样本,nn.L1Loss 的计算公式如下:其中, 为模型的预测输出,nn.L1Loss 通常用于回归问题中,例如预测房价、预测人的年龄等。它的优点是可以对异常值不敏感,即单个异
Focal Loss for Dense Object Detection论文链接:https://arxiv.org/abs/1708.02002 代码链接:集成到Detectron中,github上有大量三方实现 这周补了一下经典的focal loss,也就是RetinaNet,很多人应该也比较熟悉这篇文章了。Focal Loss是何恺明团队在2017年推出的作品,属于single stage
详解Smooth L1 Loss函数的计算方式在深度学习中,Smooth L1 Loss函数是一种用于回归任务的损失函数。它在一定程度上克服了均方误差(MSE)损失函数的局限性,特别适用于处理离群值。简介Smooth L1 Loss函数是Huber Loss的一种近似形式。它通过引入平滑因子,使损失函数在离群值附近呈现鲁棒性。相比于MSE损失函数,它在离群值附近不敏感。计算方式Smooth L1
前言机器学习基本知识——卷积网络基础补充 参考内容来自b站up主:https://space.bilibili.com/18161609一、误差计算以三层神经网络为例 经过Softmax输出,所有输出节点概率之和为1交叉熵损失(Cross Entropy Loss)针对多分类问题(Softmax输出,所有输出和概率为1)针对二分类问题(Sigmoid输出,每个输出节点互不相干) 其中,为真实标签值
自TensorFlow官方发布其2.0版本新性能以来,不少人可能对此会有些许困惑。因此这一篇概述性的文章,通过实现深度强化学习算法来具体的展示了TensorFlow 2.0的特性。正所谓实践出真知。TensorFlow 2.0的特性公布已经有一段时间了,但很多人对此应当还是一头雾水。在本教程中,作者通过深度强化学习(DRL)来展示即将到来的TensorFlow 2.0的特性,具
文章目录1 引言2 L1 Loss3 L2 Loss4 Smooth L1 Loss5 曲线对比分析6 参考链接 1 引言目标检测任务的损失函数由Classificition Loss和Bounding Box Regeression Loss两部分构成。Bounding Box Regression Loss Function的演进路线是: Smooth L1 Loss --> IoU
文章目录nn.L1Lossnn.SmoothL1Lossnn.MSELossnn.CrossEntropyLossnn.NLLLoss损失函数,是编译一个神经网络模型必须的两个参数之一,另一个是优化器。损失函数是指用于计算标签值和预测值之间差异的函数,常见的有多种损失函数可供选择,典型的有距离向量,绝对值向量等。nn.L1LossL1Loss 计算方法比较简单,原理就是取预测值和真实值的绝对误差的平均数。计算公式如下nn.SmoothL1Lossnn.SmoothL1Loss:计算分俩方面,当误
转载
2021-06-18 14:10:12
3214阅读
文章目录nn.L1Lossnn.SmoothL1Lossnn.MSELossnn.CrossEntropyLossnn.NLLLoss损失函数,是编译一个神经网络模型必须的两个参数之一,另一个是优化器。损失函数是指用于计算标签值和预测值之间差异的函数,常见的有多种损失函数可供选择,典型的有距离向量,绝对值向量等。
转载
2022-02-11 10:27:29
2201阅读
欧式距离:l2范数:l2正则化:l2-loss(也叫平方损失函数): 总结:l2范数和欧式距离很像,都是开根号。l2正则化和l2-loss都是直接开平方。上面这篇mimic的paper,就是用的l2-loss,可以看到他写的公式就是在l2范数上开平方。也可以这么理解,对于loss,需要求梯度,如果有根号后,梯度的计算就变得复杂了。
转载
2018-08-24 18:18:00
1543阅读
2评论
l2_loss()这个函数的作用是利用L2范数来计算张量的误差值,但是没有开发并且只取L2范数的值的一半 函数: tf.nn.l2_loss( t, name=None ) 参数: t:一个张量(tensor),类型可以为:half, bfloat16, float32, float64 name:
转载
2020-03-23 14:29:00
452阅读
2评论
前言今天是第二部分Loss函数二、Loss函数损失函数(Loss Function):是定义在单个样本上的,是指一个样本的误差。 代价函数(Cost Function):是定义在整个训练集上的,是所有样本误差的平均,也就是所有损失函数值的平均。 目标函数(Object Function):是指最终需要优化的函数,一般来说是经验风险+结构风险,也就是(代价函数+正则化项)。1. 常用的损失函
· L1、L2、smooth L1:smooth L1 loss的优势: 当预测框与ground truth差别过大时,梯度不至于过大; 当预测框与ground truth差别很小时,梯度值可足够小;· foca