目录1.1最近邻算法  1.2 K-邻近算法2.算法步骤:3. KNN算法实战3.1 实例分析算法步骤3.2程序实现4. KNN算法的探讨 4.1 算法优点4.2 算法缺点1.1 最近邻算法          最近邻算法(NN):为了判定未知样本的类别,以全部训练样本作
转载 2024-05-11 11:43:56
542阅读
一.KNN算法概述 KNN可以说是最简单的分类算法之一,同时,它也是最常用的分类算法之一,注意KNN算法是有监督学习中的分类算法,它看起来和另一个机器学习算法Kmeans有点像(Kmeans是无监督学习算法)。关于K-means可以看上篇博客。 二.KNN算法介绍 KNN的全称是K Nearest Neighbors,意思是K个最近的邻居,K
转载 2024-04-01 00:07:09
141阅读
一、KNN算法介绍KNN的全称是K Nearest Neighbors,意思是K个最近的邻居,从名字我们可以看出K的取值是至关重要的。那么最近的邻居又是怎么回事呢?其实啊,KNN的原理就是当预测一个新的值x的时候,根据它距离最近的K个点是什么类型来判断x属于哪个类别。 例如: 图中绿色的点就是我们要预测的那个点(是三角形还是圆形),假设K=3.那么KNN算法就会找到与它距离最近的三个点(这里用圆圈
转载 2024-06-17 13:26:21
123阅读
1.KNN算法概述用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中。2.KNN算法原理 如果K=3,绿色圆点的最近的3个邻居是2个红色小三角形和1个蓝色小正方形,少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于红色的三角形一类。 如果K
转载 2024-03-20 16:43:02
129阅读
KNN算法原理详解KNN算法1.1 解决监督学习中分类问题的一般步骤1.2 什么是消极(惰性)的学习方法2 首先从一个实例讲起3 KNN分类算法入门3.1.1算法综述3.1.2算法思想3.2 KNN三要素详解3.2.1 关于距离的衡量方法3.2.2 K值的选择问题3.2.3 分类决策的准则4 算法步骤详解4.1 KNN算法的步骤4.2 算法的优缺点5 补充:KDTree5.1 构造KD树的算法5
一、近 邻 算 法 (KNN)原理:  工 作 原 理 是 : 存 在 一 个 样 本 数据 集 合 , 也 称 作 训练 样 本 集 , 并 且 样 本 集 中 每 个 数 据 都 存 在 标 签 , 即 我 们 知 道 样 本 集 中 每 一 数 据与 所 属 分 类 的 对 应关系 。输 人 没 有 标 签 的 新 数 据 后 , 将 新 数 据 的 每 个 特 征 与
转载 2024-04-24 15:45:01
137阅读
K-最邻近算法总结 1.基本介绍 K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别...
转载 2013-11-10 22:26:00
137阅读
2评论
KNN算法是机器学习里面常用的一种分类算法,假设一个样本空间被分为几类,然后给定一个待分类所有的特征数据,通过计算距离该数据的最近的K个样本来判断这个数据属于哪一类。如果距离待分类属性最近的K个类大多数都属于某一个特定的类,那么这个待分类的数据也就属于这个类。 Contents    1. KNN算法介绍   2. KNN算法的C++实
原创 2023-05-31 14:58:09
140阅读
一、KNN算法 k-近邻算法,简单的说就是运用k算法采用测量不同特征值之间的距离的方法对日常生活中出现的人或物进行分类。它的算法核心思想就是:近朱者赤,近墨者黑。举个例子: 如图1.1所示假设坐标图中有3种颜色的图案,其中有一个白色的图案,要判断它应该属于哪种颜色,取决于它的坐标位置,经过计算它离红色图案的坐标位置更近,所以它最后属于红色类型。 图1.1 二
转载 2023-10-29 09:29:34
75阅读
KNN是什么?邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。KNN是有监督学习KNN原理?如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别KNN实现步骤?1.数据预处理 2.采用合适的数据结构储存训练集和测试集 3.设定参数,如K 4.维护一个大小为k的的按距离由大
1.k近邻算法k近邻学习(K-Nearest Neighbor,简称KNN)学习是一种常用的监督学习方法,其工作机制非常简单:给定测试样本,基于某种距离度量找出训练集中与其距离最近的k个样本,然后通过这k个邻居样本来进行预测,那种类别的邻居数量多,这个测试样本就被认为是那个类别的。与“投票”较为类似。下图是一个KNN的二分类问题的一个实列,可以看出k的取值不同,测试样本的分类也会不同,但都是基于他
转载 2024-04-04 18:57:39
280阅读
KNN算法问题提出依旧是分类问题,现在有了一数据集,数据集中的每个数据都有一个标签,那么多对
原创 2022-07-01 10:06:00
177阅读
  #!/usr/bin/python # -*- coding: UTF-8 -*- import numpy as np from matplotlib import pyplot as plt from matplotlib.patches import Circle from sklearn.neighbors import KDTree np.random.seed(0) points
转载 2020-10-12 11:03:00
111阅读
2评论
上次说道分类和预测的过程:1、将“训练算法”应用在“训练集”上,得到“模型”。2、用测试集测试“模型”,甄别出误差小于预期的最优模型。3、把模型应用到目标数据上 量的动物信息
转载 2023-04-25 20:10:49
45阅读
记得读研那会,接触过这个算法算法原理还是比较容易理解,类似机器学习中的预测,在给定的一堆数据,预测当前节点的分类。计算距离,然后排序,计算最相似的分类。 import java.util.Arrays; /** * KNN又名临近算法 * 实现步骤: * 1. 首先计算出所有的临近距离值 * 2. 对临近值进行排序 * 3. 选出临近值最小的K个数 * 4. 投票选出结果 */ public
原创 2021-07-28 09:14:39
216阅读
主要内容什么是KNNKNN用来解决哪类问题KNN实现的步骤KNN实战应用KNN介绍KNN(K-Nearest Neighbor)算法,意思是K个最近的邻居,从这个名字我们就能看出一些KNN算法的蛛丝马迹了。K个最近邻居,毫无疑问,K的取值肯定是至关重要的。那么最近的邻居又是怎么回事呢?其实啊,KNN的原理就是当预测一个新的值x的时候,根据它距离最近的K个点是什么类别来判断x属于哪个类别。图中绿色
原创 精选 2022-08-17 12:50:02
548阅读
 kNN算法将样本分到离它最相似的样本所属的类。算法本质上使用了模板匹配的思想。要确定一个样本的类别,可以计算它与所有训练样本的距离,然后找出和该样本最接近的k个样本,统计这些样本的
原创 2018-08-21 14:53:56
280阅读
一、KNN算法简介: 用一句通俗易懂的话来形容KNN算法,便是:“近朱者赤,近墨者黑”。为什么这么说呢?看看它的的算法原理吧。 算法原理:计算测试样本与每个训练样本的距离(距离计算方法见下文),取前k个距离最小的训练样本,最后选择这k个样本中出现最多的分类,作为测试样本的分类。如图所示,绿色的为测试样本,当k取3时,该样本就属于红色类;当k取5时,就属于蓝色类了。所以k值的选择很大程度影响着该算法
KNN算法概述 KNN可以说是最简单的分类算法之一,同时,它也是最常用的分类算法之一,注意KNN算法是有监督学习中的分类算法,它看起来和另一个机器学习算法Kmeans有点像(Kmeans是无监督学习算法),但却是有本质区别的。那么什么是KNN算法呢,接下来我们就来介绍介绍吧。二.KNN算法介绍 KNN的全称是K Nearest Neighbors,意思是K个最近的邻居,从这个名字我们就能看出一些K
转载 2024-04-11 13:07:47
54阅读
本文参考:常用数据挖掘算法总结及 Python 实现,机器学习实战,以及网友算法思路:  存在一个样本数据集,也称作训练样本集,并且样本中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系,输入没有标签的新数据后,将新数据的每个特征与样本集中的数据对应的特征进行比较,然后算法提取样本集中特征最相似的数据(最近邻)的分类标签。一般来说,我们只选择样本集中前k个最相似的数据,这就是k-
  • 1
  • 2
  • 3
  • 4
  • 5