tensorflow中自带四种交叉熵函数,可以轻松的实现交叉熵的计算。tf.nn.softmax_cross_entropy_with_logits()
tf.nn.sparse_softmax_cross_entropy_with_logits()
tf.nn.sigmoid_cross_entropy_with_logits()
tf.nn.weighted_cross_ent
交叉熵(cross entropy)是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距。1 信息量假设XX是一个离散型随机变量,其取值集合为χχ,概率分布函数p(x)=Pr(X=x),x∈χp(x)=Pr(X=x),x∈χ,则定义事件X=x0X=x0的信息量为: I(x0)=−log(p(x0))I(x0)=−log(p(x0))由于是概率所以p(x0)p(x0)的
转载
2024-03-06 12:29:03
232阅读
参考地址:1、TensorFlow交叉熵函数(cross_entropy)·理解2、tf中交叉熵计算3、损失函数softmax_cross_entropy、binary_cross_entropy、sigmoid_cross_entropy之间的区别与联系(详细介绍了信息、信息熵等基本原理)正文一、tf.nn.的交叉熵损失函数:TensorFlow针对分类问题,实现了四个交叉熵函数,分别是tf.n
一、二分类损失函数1.1 从一个简单的实例说起对于一个二分类问题,比如我们有一个样本,有两个不同的模型对他进行分类,那么它们的输出都应该是一个二维向量,比如:模型一的输出为:pred_y1=[0.8,0.2] 模型二的输出为:pred_y2=[0.6,0.4] 需要注意的是,这里的数值已经经过了sigmoid激活函数(为什么要这么说,这对于后面理解pyt
转载
2024-10-11 20:34:16
16阅读
命名空间:tf.nn函数作用说明sigmoid_cross_entropy_with_logits计算 给定 logits 的S函数 交叉熵。测量每个类别独立且不相互排斥的离散分类任务中的概率。(可以执行多标签分类,其中图片可以同时包含大象和狗。)weighted_cross_entropy_with_logits计算加权交叉熵。softmax_cross_entropy_with_logits计
首先,热力学中的“熵”和我们要说的机器学习中的也就是信息学中的“熵”是不一样的。记得高中化学老说说过,熵越大说明状态越不稳定,气态的熵就大于固态的熵。但是现在要说的“熵”就不一样了。本文主要的内容:熵-->相对熵(KL散度)-->交叉熵。先来总结一下:熵(信息熵)表示事件所含信息量的大小。熵越大,所含信息量越大。相对熵(KL散度)衡量两个分布的差异交叉熵KL散度=交叉熵−信息熵,所以当
交叉熵的作用 通过神经网络解决分类问题时,最常用的一种方式就是在最后一层设置n个输出节点,无论在浅层神经网络还是在CNN中都是如此的,比如,在AlexNet中最后输出层有1000个节点。一般情况下,最后一个输出层的节点个数与分类认为的目标数相等。假设最后节点数为N,那么对于每一个样例,神经网络可以得到一个N维的数组作为输出结果,数组中的每一个维度对应一个类别,在理想的情况下,如果一个样本
pytorch的F.cross_entropy交叉熵函数和标签平滑函数F.cross_entropy先来讲下基本的交叉熵cross_entropy,官网如下:torch.nn.functional.cross_entropy — PyTorch 1.12 documentationtorch.nn.functional.cross_entropy(input, target, weight=Non
转载
2024-04-29 17:13:38
552阅读
一、交叉熵参考链接:https://zhuanlan.zhihu.com/p/61944055信息熵: 表示随机变量不确定的度量,是对所有可能发生的事件产生的信息量的期望。熵越大,随机变量或系统的不确定性就越大。公式如下:相对熵: 又称KL散度,用于衡量对于同一个随机变量x的两个分布p(x)和q(x)之间的差异。在机器学习中,p(x)从常用于描述样本的真实分布,而q(x)常用于表示预测的分布。KL
转载
2024-01-29 16:24:14
80阅读
在训练深度学习模型的时候,通常将数据集切分为训练集和验证集.Keras提供了两种评估模型性能的方法:使用自动切分的验证集使用手动切分的验证集 一.自动切分在Keras中,可以从数据集中切分出一部分作为验证集,并且在每次迭代(epoch)时在验证集中评估模型的性能.具体地,调用model.fit()训练模型时,可通过validation_split参数来指定从数据集中切分出验证集的比例.#
杂乱!!stacking的理解:多个数据的和在一起——>预测新的内容还有一种结合策略是使用另外一个机器学习算法来将个体机器学习器的结果结合在一起,这个方法就是Stacking。算法示意:(思路:不断的train test 与predict进行比较)如何使得后期的模型拟合更好: 5. 次级模型尽量选择简单的线性模型 6. 利用K折交叉验证 个人理解: 运用同一个组,分别取组内其余数据(n-1)
转载
2024-06-05 07:56:15
41阅读
目录1.信息论1.1.信息量 1.2.熵 1.3.KL散度(相对熵)1.4.交叉熵2.交叉熵的类型2.1.多分类交叉熵2.2.二分类交叉熵3.学习过程(以二分类为例)3.1.第一项求偏导3.2.第二项求偏导3.3.第三项求导3.4.计算结果1.信息论交叉熵(cross entropy)是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距。同时,交叉熵也是信息论中的一个概
交叉熵损失函数前言交叉熵损失函数信息量信息熵交叉熵求导过程应用扩展Binary_Crossentropy均方差损失函数(MSE) 前言深度学习中的损失函数的选择,需要注意一点是直接衡量问题成功的指标不一定总可行。损失函数需要在只有小批量数据时即可计算,而且还必须可微。下表列出常见问题类型的最后一层以及损失函数的选择,仅供参考。问题类型最后一层激活损失函数二分类问题sigmoidbinary_cr
转载
2024-06-07 21:32:37
115阅读
eep learning:五十一(CNN的反向求导及练习)
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它。虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好。而本文的主要目的是介绍CNN参数在使用bp算法时该怎么训练,毕竟CNN中有卷积层和下采样层,虽然和MLP的bp算法本质上相同,但
转载
2023-08-22 12:08:30
146阅读
交叉熵损失是深度学习中应用最广泛的损失函数之...
转载
2020-01-12 15:27:00
264阅读
2评论
一、对多分类函数tf.nn.softmax()与交叉熵函数tf.nn.softmax_cross_entropy_with_logits()的认识这俩函数看着就有关系,前缀都是tf.nn.softmax,那么各自的作用是什么呢? 首先看这俩函数的参数,前者是logits,后者也
交叉熵
转载
2021-07-17 00:34:00
193阅读
2评论
关于交叉熵的定义与解释,请看这篇文章:
https://baijiahao.baidu.com/s?id=1618702220267847958&wfr=spider&for=pc
给定一个策略, 交叉熵就是在该策略下猜中颜色所需要的问题的期望值。更普遍的说,交叉熵用来衡量在给定的真实分布下,使用非真实分布所指定的策略消除系统的不确定性所需要付出成本的大小。交叉的字面意思在于:真
原创
2021-07-09 14:53:47
1122阅读
交叉熵损失函数(Cross Entropy) 一般来说,Cross Entropy损失函数常用于分类问题中,十分有效。 说到分类问题,与之相关的还有回归问题,简述两者区别: 回归问题,目标是找到最优拟合,用于预测连续值,一般以区间的形式输出,如预测价格在哪个范围、比赛可能胜利的场数等。其中,y_hat表示预测值,y表示真实值,二者差值表示损失。常见的算法是线性回归(LR)。 分类问题,目标
转载
2023-08-25 21:04:17
158阅读
什么是交叉熵交叉熵(Cross-entropy)是信息论中一个常用的度量方式,常用于衡量两个概率分布之间的差异。在机器学习中,交叉熵常用于衡量真实概率分布与预测概率分布之间的差异,用于评估分类模型的性能。假设有两个概率分布 P 和Q,则它们的交叉熵为:其中,P(x) 表示事件 x 在真实分布中的概率,Q(x) 表示事件x 在预测分布中的概率,log 表示自然对数。交叉熵越小,表示预测分布越接近真实
转载
2023-09-25 08:54:31
85阅读