减法降噪1: ref the 语音增强-理论与实践语音增强-理论与实践----笔记-减法关于减法降噪,在噪声为加性噪声的前提下,区分出带语音帧与噪声帧,通过带语音帧的幅度或者功率减去估计出来的噪声谱,使用原带语音的相位结合减去噪声谱后的估计语音,恢复出估计语音即增加后的语音。如下公式中带语音=y(n)----Y(w)估计噪声= d(n)-----D(w)期望语音=x(n)---
博主最近转战语音增强研究,刚学习了最基础也是最成熟的方法——减法,最早是boll提出的《Suppression of acousic noise in speech using spectral subtraction》。 链接中的这边博客给我帮助很大,比较详细,matlab源码也可以找到,对于刚入门音频处理的小白来讲,先从这边文献《Enhencement OF Speech Corr
在语音中最常用的方法是减法,其基本思想是通过静音段(噪声段)估计语音中的噪声成分,然后将含噪声语音减去估计的噪声就得到了纯净的语音。思考1,:减法适用于整个语音中都有稳定的噪声成分。思考2:静音段如何控制是否需要端点检测,还是手动调节?思考3:估计的噪声如何描述(每一帧中的平均能量)。思考4:如何减去噪声?带着这些思考我们开始对减法原理上的探索。语音的事件序列为x(n),加窗分帧处理后可
一、简介 在语音中最常用的方法是减法,减法是一种发展较早且应用较为成熟的语音算法,该算法利用加性噪声与语音不相关的特点,在假设噪声是统计平稳的前提下,用无语音间隙测算到的噪声频谱估计值取代有语音期间噪声的频谱,与含语音频谱相减,从而获得语音频谱的估计值。减法具有算法简单、运算量小的特点,便于实现快速处理,往往能够获得较高的输出信噪比,所以被广泛采用。该算法经典形式的不足之处是处理
原创 2021-07-07 15:25:37
581阅读
转载请注明出处: http://xiahouzuoxin.github.io/notes/减法模型实际听觉环境中,肯定是含有声的,那掺杂有噪声的声音信号中原声音信号和噪声信号是怎样体现的呢?一种普遍被使用的方法是:採集到的声音信号永远都是原信号与噪声信号的叠加,即模型是信号的直接叠加,这就要满足
转载 2016-03-30 16:38:00
329阅读
2评论
一、简介在语音中最常用的方法是减法,减法是一种发展较早且应用较为成熟的语音算法,该算法利用加性噪声与语音不相关的特点,在假设噪声是统计平稳的前提下,
原创 2021-07-05 13:36:06
355阅读
图像噪声知识点python代码c++代码 知识点图像噪声在OCR、机器人视觉与机器视觉领域应用开发中是重要的图像预处理手段之一,对图像二值化与二值分析很有帮助,OpenCV中常见的图像噪声的方法有均值噪声高斯模糊噪声非局部均值噪声双边滤波噪声形态学去噪声这里暂时先说上面的三个方法,后面我们会在分享完相关知识点之后再来说。python代码import cv2 as cv import
转载 2023-06-28 20:38:47
273阅读
一、简介在语音中最常用的方法是减法,减法是一种发展较早且应用较为成熟的语音算法,该算法利用加性噪声与语音不相关的特点,在假设噪声是统计平稳的前提下,用无语音间隙测算到的噪声频谱估计值取代有语音期间噪声的频谱,与含语音频谱相减,从而获得语音频谱的估计值。减法具有算法简单、运算量小的特点,便于实现快速处理,往往能够获得较高的输出信噪比,所以被广泛采用。该算法经典形式的不足之处是处理后会产生具有一定节奏性起伏、听上去类似音乐的“音乐噪声”。转换到频域后,这些峰值听起来就像帧与帧之间频率随机变化
原创 2021-08-13 09:11:51
247阅读
【技术实现步骤摘要】一种基于深度神经网络的音频降噪方法本专利技术涉及歌唱领域的音频降噪方法,特别是一种基于深度神经网络的音频降噪方法。技术介绍现实生活中的语音音频信号或是歌声音频信号,往往都不是纯净的,都伴有各种各样的噪声。而音频降噪的目的就是尽可能的去除音频信号中的噪声,使音色转换后的歌声更纯净,从而改善音频的质量,提高它的清晰度以及可懂度。传统的音频降噪方法主要有基于统计模型的贝叶斯估计、子
一、图像处理——滤波过滤 :是信号和图像处理中基本的任务。其目的是根据应用环境的不同,选择性的提取图像中某些认为是重要的信息。过滤可以移除图像中的噪音、提取感兴趣的可视特征、允许图像重采样等等。频域分析 :将图像分成从低频到高频的不同部分。低频对应图像强度变化小的区域,而高频是图像强度变化非常大的区域。 在频率分析领域的框架中,滤波器是一个用来增强图像中某个波段或频率并阻塞(或
转载 2023-08-11 18:08:33
1192阅读
傅里叶变换三角函数基,缩得窄对应高频,伸得宽对应低频;基函数不断和信号相乘,某个尺度乘出来的结果,就可以理解成信号所包含的当前尺度对应频率成分有多少。于是,基函数会在某些尺度下,与信号相乘得到一个很大的值,因为此时二者有一种重合关系。那么我们就知道信号包含该频率的成分的多少。傅里叶变换可以分析信号的频谱 但对于非平稳过程(频率随时间变化),傅里叶变换有局限性 他只能获取一段信号总体上包含的频率成分
一、简介在语音中最常用的方法是
原创 2022-04-08 11:44:34
1849阅读
一、简介在语音中最常用的方法是减法,减法是一种发展较早且应用较为成熟的语音算法,该算法利用加性噪声与语音不相关的特点,在假设噪声是统计平稳的前提下,用无语音间隙测算到的噪声频谱估计值取代有语音期间噪声的频谱,与含语音频谱相减,从而获得语音频谱的估计值。减法具有算法简单、运算量小的特点,便于实现快速处理,往往能够获得较高的输出信噪比,所以被广泛采用。该算法经典形式的不足之处是处理后会产生具有一定节奏性起伏、听上去类似音乐的“音乐噪声”。转换到频域后,这些峰值听起来就像帧与帧之间频率随机变化
原创 2021-08-20 16:43:49
192阅读
字典学习在图像和信号处理中是一种重要的算法,常常用于图像、分类等,其中图像可以认为是一种无监督学习技术。接下来简单介绍字典学习原理,并使用Python进行灰度图像。 1 字典学习 灰度图像可以认为是二维信号,可以使用冗余字典和该字典下的稀疏编码来表示。 字典学习就是根据已知的数据找到合适的字典和其对应的稀疏编码,使误差尽可能的小。矩阵使用冗余字典和稀疏编码表示如图
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。?个人主页:Matlab科研工作室?个人信条:格物致知。
原创 2023-05-04 21:05:35
673阅读
音频数据小波-python
转载 2023-05-23 00:28:44
459阅读
高斯噪声(Gaussiannoise)和椒盐噪声(salt-and-peppernoise)均可通过Python库:skimage实现。#import os #import语句的作用是用来导入模块,可以出现在程序任何位置 import cv2 as cv #导入openCV库 import skimage #导入skimage模块.scik
转载 2023-07-02 14:50:16
334阅读
在处理信号和数据时,是一项关键的技术。 Python 是我近期遇到的一个挑战。通过使用Python中的各种库和工具,我成功地实现了数据的处理。下面是我整理的解决过程,包括环境准备、集成步骤、配置详解、实战应用、排错指南和性能优化。 ## 环境准备 为了确保可以顺利进行处理,我们需要先搭建合适的环境。以下是所需的技术栈: | 技术 | 版本 | 兼容性 | |:--
原创 6月前
53阅读
实验目的        最小二乘法是一个很实用,也很基础的算法,应用的场景十分的广泛和普遍,最常用的地方就是机器学习了,通过最小二乘,来进行分类/回归,还有曲线拟合。        本文通过最小二乘法对图像像素点进行拟合,通过拟合曲线去去除
?模型添加噪声,增强鲁棒性为模型添加噪声主要有两种方式1️⃣ 为训练集添加噪声,训练时加2️⃣ 为训练好的模型参数添加噪声,训练后加第一种这里不详细说,transforms里提供了一些裁剪和旋转图片的方式,此外可以对图片添加高斯噪声等随机性。如何实现第二种噪声,特别是对于大型网络,每一层的参数大小可能处在不同的数量级,那么是我们这里重点要谈的部分。 根据论文里的想法,就是如果要达到级别的敏感度
  • 1
  • 2
  • 3
  • 4
  • 5