<script type="text/javascript"> document.location.href=""; </script> 很多情况下需要将一个用字符串代表的属性转化成特定的对象,比如说Boolean,Integer或Date。HiveMind通过Translator完成这项工作,
先说明一下,这里说的Hive on Spark是Hive跑在Spark上,用的是Spark执行引擎,而不是MapReduce,和Hive on Tez的道理一样。 从Hive 1.1版本开始,Hive on Spark已经成为Hive代码的一部分了,并且在spark分支上面,可以看这里https://github.com/apache/hive/tree/spark,并会定期的移到master分
# Hive 不走分区的实现方法
## 1. 整体流程
下面是实现 Hive 不走分区的整体步骤:
| 步骤 | 描述 |
|-----|------|
| 1 | 创建一个非分区表 |
| 2 | 导入数据到表中 |
| 3 | 查询数据 |
接下来,我们将逐步介绍每个步骤需要执行的操作。
## 2. 创建非分区表
首先,我们需要创建一个非分区表。分区表是按照特定的列值将
原创
2023-10-06 16:15:51
247阅读
# Hive和Spark不走分区
在大规模数据处理中,分区是一种常用的数据组织方式,可以提高查询效率和降低I/O开销。然而,在某些情况下,Hive和Spark的分区策略可能会导致性能下降,因此我们需要考虑不走分区的处理方式。
## 什么是分区
在Hive和Spark中,分区是将数据按照某个字段的值进行划分,将数据分散存储在不同的目录或文件中。例如,我们有一个包含用户信息的表,可以按照用户所在
原创
2023-08-11 09:52:38
104阅读
目录0.引 言1.备份方法2 数据恢复方法 2.1 将将备份文件添加到hdfs中2.2 导入数据到HBase集群3 相关参考代码4.小 结0.引 言HBase在大数据处理中地位至关重要,有的公司会将HBase作为原始数据接入层,那么Hbase的数据备份就显得至关重要,那么如何备份呢?这里我们引入Hbase的一个API,hbase org.apache.hadoop.hbase.mapre
转载
2024-03-04 09:43:58
48阅读
1.Hive简述 1.1 Hive是什么 Hive是数据仓库.它是构建在Hadoop之上的,通过解析QL(Hive SQL),转换成MR任务(Tez,Spark......)去提交执行. RDBMS一般是写验证,而Hive是读验证,即数据进入不会验证数据是否符合要求,只在读取的时候检查,解析具体字段 1.2 Hive的优缺点 优点: 可以直接访问HDFS,或者其它的
转载
2023-11-13 12:42:49
119阅读
Fetch抓取 hive中的某些查询不必使用MR,例如select * from,在这种情况下,hive可以简单的读取表的存储目录下的文件,然后输出查询结果到控制台。 hive.fetch.task.conversion设置成mre,如下查询方式都不会执行MR程序 hive (default)> set hive.fetch.task.conversion=more; hive (defau
转载
2024-05-30 13:39:12
95阅读
-- hive的库、表等数据操作实际是hdfs系统中的目录和文件,让开发者可以通过sql语句, 像操作关系数据库一样操作文件内容。一、hiveSQL转化为MR过程 一直好奇hiveSQL转化为MR过程,好奇hive是如何做到这些的,所以在网上找了几篇相关博客,根据自己理解重新画了一份执行过程图,做笔记。 二、h
转载
2023-07-12 09:30:10
165阅读
一,调优基础 :1 ,连接暗示 :需求 : 让 join 发生在 map 端sql :select /*+ mapjoin(customers) */ a.*,b.*
from customers a left outer join orders b
on a.id=b.cid;2 ,hive 执行计划hql 在执行的时候,是转化成了什么样的 mr 去执行的。3 ,查看执行计划 : expla
转载
2023-09-05 15:24:40
111阅读
Pig是一种编程语言,它简化了Hadoop常见的工作任务。Pig可加载数据、表达转换数据以及存储最终结果。Pig内置的操作使得半结构化数据变得有意义(如日志文件)。同时Pig可扩展使用Java中添加的自定义数据类型并支持数据转换。 Hive在Hadoop中扮演数据仓库的角色。Hive添加数据的结构在HDFS(hive superimposes structure on data in HDFS)
转载
2023-09-12 03:47:08
113阅读
依赖: <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-hive -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactI
转载
2023-07-03 17:01:46
116阅读
基于hive引擎的计算优化本篇文章主要介绍hive引擎的计算优化,可能也是一篇实打实的对大家实际工作带来帮助的文章,全文主要包含三个部分:hive底层、hive参数调优、常见问题解决一、hive底层 - MapReduce1.MR进程一般一个完成的MR程序在运行时有三个进程,分别如下: (1)MR Appmaster:负责整个调度和过程协调 (2)MapTask:负责Map阶段的整个数据处理流程
转载
2023-11-24 21:07:57
498阅读
# Hive MapReduce
在大数据领域中,Hive是一个非常强大的数据仓库基础设施,它能够提供类似于SQL的查询语言来处理海量数据。而Hive MapReduce(简称Hive MR)是Hive的核心组件之一,它使用了MapReduce框架来实现Hive的查询功能。
## 什么是MapReduce?
MapReduce是一种用于处理和生成大规模数据集的一种编程模型和算法。它分为两个阶
原创
2023-12-05 16:26:13
34阅读
Hive on MR是基于MapReduce的Hive实现,可以用于大数据处理。然而,随着数据技术的不断演进,Hive的实现逐渐转向Spark等计算引擎。因此,了解“Hive on MR”的迁移以及兼容性处理变得至关重要。下面将详细介绍“Hive on MR”相关问题的解决方案。
## 版本对比与兼容性分析
Hive on MR和其他实现版本(如Hive on Spark)的对比可以通过如下四
我们知道,Hive默认使用的计算引擎是MR,但有没有想过我们写的HQL语句是如何转换为MR程序的?所以博主总结了一些简单HQL语句转换为MR的基本原理【1】常用SQL转换操作 Join的实现原理 对于SQL来说,join操作可以说是最常用的操作了,那么是如何转换为MR程序的呢?SQL语句如下?select u.name, o.orderid from order o join user u on
转载
2023-07-14 13:10:26
202阅读
一、Hive的概念介绍(相当于Hadoop的客户端) 1> Hive处理的数据存储在HDFS中 2>Hive分析数据的底层是MR(在安装完Hive的时候它底层已经完成了对应SQL语句和MR编程的对应关系的模板的写入,将所有MR模板封装在Hive中),而当客户端输入的SQL语句时,
转载
2023-11-20 07:57:59
71阅读
hive就是一个将sql语句转化为MR工具hive的工作原理:1、使用antlr定义sql语法,(详细见hive.g),由antlr工具将hive.g编译为两个java文件:HiveLexer.java HiveParser.java,可以将输入的sql解析为ast树2、org.apache.hadoop.hive.ql.Driver对ast树进行
转载
2024-01-17 14:17:52
145阅读
在Hive中查询语句往往都要被解析成MapReduce的job进行计算,但是有两个
原创
2022-12-11 23:02:25
319阅读
HQL是如何转换为MR任务的一、Hive的核心组成介绍二、HQL转换为MR任务流程说明三、HQL的读取与参数解析3.1 程序入口 — CliDriver3.2 找到“CliDriver”这个类的“main”方法3.3 主类的run方法3.4 executeDriver方法3.5 processLine方法3.6 processCmd方法3.7 processLocalCmd方法3.8 qp.ru
转载
2023-10-05 19:57:20
160阅读
背景:熟悉MR执行的步骤后,可以往3个点继续分析:1. code:MR的执行code,根据执行的步骤产出流程图。2.引擎:了解TEZ/SPARK sql执行的步骤,产出如MR一样的流程图,清楚MR,TEZ,SPARK SQL的区分3.sql编译过程:熟悉hsql提交到执行计划,到MR执行的过程,输出文档。 目前从第三点入手,主要还是跟工作息息相关。美团文章:https://tech.me
转载
2024-08-22 16:14:53
85阅读