一。用hadoop作网络爬虫的原因爬虫程序的海量计算特性要求必须要用分布式方式来实现。一般爬虫爬取的是整个互联网上的所有或部分数据,这个数据量一般是P byte级,至少也是T byte级,因此用分布式的方式来获取这是不二之选。在众多的分布式计算框架里hadoop绝对是个中翘楚,从hadoop的用户名单中可以看出hadoop的应用范围已经非常广泛,hadoop本身已经接近成熟。因此hadoop是首
转载 2023-09-14 13:23:00
97阅读
1. 简单说明爬虫原理简单来说互联网是由一个个站点和网络设备组成的大网,我们通过浏览器访问站点,站点把HTML、JS、CSS代码返回给浏览器,这些代码经过浏览器解析、渲染,将丰富多彩的网页呈现我们眼前;2. 理解爬虫开发过程1).简要说明浏览器工作原理;、方式1:浏览器提交请求--->下载网页代码--->解析成页面方式2:模拟浏览器发送请求(获取网页代码)->提取有用的数据-&g
转载 2023-07-17 21:21:07
163阅读
我国目前并未出台专门针对网络爬虫技术的法律规范,但在司法实践中,相关判决已屡见不鲜,K 哥特设了“K哥爬虫普法”专栏,本栏目通过对真实案例的分析,旨在提高广大爬虫工程师的法律意识,知晓如何合法合规利用爬虫技术,警钟长鸣,做一个守法、护法、有原则的技术人员。案情介绍2018年10月,北京市公安局海淀分局警务支援大队接到辖区某互联网公司报案称,发现有人在互联网上兜售疑似为该公司的用户信息。根据这条线索
第0章大数据概论一、大数据概念大数据:Big Data,指的是无法在一定时间范围内使用常规软进行捕捉,管理和处理的数据的集合。需要新的处理模式来进行决策力。洞察收取海量、高增长和多样化的信息进行管理。二、大数据的特点大量高速多样性低密度值三、大数据的应用场景物流仓储零售旅游商品广告推荐保险金融人工智能…四、大数据的部门组织结构平台组:数据仓储组:数据挖掘:报表工程:第一章Hadoop简介一、什么是
转载 2023-07-25 20:09:02
189阅读
Python书写爬虫,目的是爬取所有的个人商家商品信息及详情,并进行数据归类分析整个工作流程图:   第一步:采用自动化的方式从前台页面获取所有的频道from bs4 import BeautifulSoup import requests #1、找到左侧边栏所有频道的链接 start_url = 'http://hz.58.com/sale.shtml' url_
转载 2023-06-14 18:55:46
139阅读
大数据的百科介绍上看到,大数据想要成为信息资产,需要有两步,一是数据怎么来,二是数据处理。数据怎么来: 在数据怎么来这个问题上,数据挖掘无疑是很多公司或者个人的首选,毕竟大部分公司或者个人是没有能力产生这么多数据的,只能是挖掘互联网上的相关数据。 网络爬虫是Python的传统强势领域,最流行的爬虫框架Scrapy,HTTP工具包urlib2,HTML解析工具beautifulsoup,XML解析
1. 大数据的概念大数据(Big Data):指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程  优化能力的海量、高增长率和多样化的信息资产。主要解决,海量数据的存储和海量数据的分析计算问题。1.2 大数据的包含以下4个特点:1.Volume(大量)2.Velocity(高速)3.Variety(多样)4
转载 2023-10-15 14:23:55
62阅读
MapReduce简介MapReduce是hadoop四大组件之一(HDFS,MapReduce,YARN和Comment),是一种分布式计算编程模型,用于解决海量数据的计算问题。MapReduce思想原理MapReduce采用分而治之的思想,将大文件切割成片,然后由多个map task并行处理,处理完成后交由reduce再做合并,最后输出结果MapReduce执行过程这里我们以经典例子WordC
转载 2024-01-11 09:10:09
95阅读
一、什么是大数据,什么是Hadoop        大数据:指无法再一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多元化的信息资产。        数据存储单位:bit<Byte&
转载 2024-02-22 15:39:19
64阅读
hadoop是什么?Hadoop就是为大数据应运而生、Hadoop 框架是用 Java 编写的、Hadoop是Apache下的子项目、Hadoop是分布式系统基础架构,它主要是用于大数据的处理、Hadoop可以看成是一个平台或者生态系统。Hadoop生态系统包含哪些组件?有分布式存储HDFS,有并行计算 MapReduce,有NoSQL数裾库的HBase,有数据仓库工具 Hive, 有 Pig 工
转载 2023-09-06 20:43:14
63阅读
大数据在近些年来越来越火热,人们在提到大数据遇到了很多相关概念上的问题,比如云计算、 hadoop等等。那么,大数据是什么、Hadoop是什么,大数据Hadoop有什么关系呢?  大数据概念早在1980年,著名未来学家阿尔文·托夫勒提出的概念。2009年美国互联网数据中心证实大数据时代的来临。随着谷歌 MapReduce和 GoogleFile System (GFS)的发布,大数据
python数据爬虫项目作者:YRH 时间:2020/9/26新手上路,如果有写的不好的请多多指教,多多包涵前些天在一个学习群中有位老哥发布了一个项目,当时抱着满满的信心想去尝试一下,可惜手慢了,抢不到,最后只拿到了项目的任务之间去练习,感觉该项目还不错,所以就发布到博客上来,让大家一起学习学习一、任务清单项目名称:国家自然科学基金大数据知识管理服务门户爬取项目爬取内容:爬取内容:资助项目(561
hadoop支持命令行操作HDFS文件系统,并且支持shell-like命令与HDFS文件系统交互,对于大多数程序猿/媛来说,shell-like命令行操作都是比较熟悉的,其实这也是Hadoop的极大便利之一,至少对于想熟悉乃至尽快熟练操作HDFS的人来说。由于平时在工作中经常用到Hadoop Shell命令来操作HDFS上的文件,有时候因为Hadoop Shell命令不熟悉,需要重新查找;或者需
转载 2023-07-24 11:37:44
46阅读
大数据中比较火爆的Hadoop、Spark和Storm,最常见的七种项目你们是否已经了解到位了呢,下面一起了解一下吧一、数据整合称之为“企业级数据中心”或“数据湖”,这个想法是你有不同的数据源,你想对它们进行数据分析。这类项目包括从所有来源获得数据源(实时或批处理)并且把它们存储在hadoop中。 “企业级数据中心”通常由HDFS文件系统和HIVE或IMPALA中的表组成二、专业分析许多数据整合项
转载 2023-07-20 17:54:59
123阅读
1.大数据概述       近些年来,大数据这个词频繁出现在我们的生活中。那么大数据到底是什么呢,让我们一起来看一下。     通俗来说。大数据是一个概念也是一门技术,是在以Hadoop为代表的大数据平台框架上进行各种数据分析的技术。大数据包括了以Hadoop和Spark为代表的基础大数据框架。还包括了数据挖掘、数据分析、实时数
大数据框架实例(Hadoop 原理总结)简介Hadoop是一个开发和运行处理大规模数据的软件平台,实现了在大量的廉价计算机组成的集群中对海量数据进行分布式计算。    大概工作流程如下图: Hadoop框架中最核心的设计是HDFS(文件系统)和MapReduce(编程模型,大数据并行运算)。二、HDFS(文件系统)1、HDFS简介HDFS即Hadoop Di
Hadoop学习笔记01一、大数据概念大数据 大数据(Big Data):指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。主要解决问题海量数据的采集存储和分析计算问题特点大量(Volume)高速(Velocity):处理效率多样(Variety):结构化(数据库、文本)/非结构化(音频、视频)低价值密度(Value):数据总量越大,价值密度越低。有用数据提纯二、Hadoop入门
好程序员浅谈大数据Hadoop有什么关系,随着信息化技术的日渐普及、宽带网络的快速兴起,以及云计算、移动互联和物联网等新一代信息技术的广泛应用,全球数据的增长速度进一步加快。与此同时,一批数据收集、存储、处理技术和应用快速发展并逐渐汇聚,那么下面给大家介绍一下吧。   1、认识大数据   所谓大数据,就是从各种类型的数据中,快速获得有价值信息的能力。大数据是需要新处理模式才能具有更强的决策力、洞
什么是hadooop,什么是hadoop-ha(高可用)hadoopHadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。具有可靠、高效、可伸缩的特点。Hadoop的核心是YARN,HDFS和Mapreduce下图是hadoop生态系统,集成spark生态圈。在未来一段时间内,hadoop将于
转载 2023-07-12 12:32:10
58阅读
    hadoop是一个分布式文件系统(Hadoop Distributed File System)HDFS。Hadoop是一个能够对大量数据进行分布式处理的软件框架。 Hadoop 以一种可靠、高效、可伸缩的方式进行数据处理。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop带有用
原创 2016-07-11 01:49:55
662阅读
  • 1
  • 2
  • 3
  • 4
  • 5