1. 大数据的概念

大数据(Big Data):指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程  优化能力的海量、高增长率和多样化的信息资产。

主要解决,海量数据的存储和海量数据的分析计算问题。

1.2 大数据的包含以下4个特点:

1.Volume(大量)2.Velocity(高速)3.Variety(多样)4.Value(低价值密度)

1.3 大数据的发展前景:

    1.党的十八大提出“实施国家大数据战略”,国务院印发《促进大数据发展行动纲要》,大数据技术和应用处于创新突破期,国内市场需求处于爆发期,我 ?国大数据产业面临重要的发展机遇。

    2. 党的十九大提出“推动互联网、大数据、人工智能和实体经济深度融合”。

2. 大数据生态体系之Hadoop框架

2.1 Hadoop简介:

  1. Hadoop是一个由Apache基金会所开发的分布式系统基础架构。
  2. 主要解决,海量数据的存储和海量数据的分析计算问题。

   广义上来说,Hadoop通常是指一个更广泛的概念——Hadoop生态圈。

2. Hadoop的发展历程:

  1. Lucene框架是Doug Cutting开创的开源软件,用Java书写代码,实现与Google类似的全文搜索功能,它提供了全文检索引擎的架构,包括完整的查询引擎和索引引擎。
  2. 2001年年底Lucene成为Apache基金会的一个子项目。
  3. 对于海量数据的场景,Lucene面对与Google同样的困难,存储数据困难,检索速度慢。
  4. 学习和模仿Google解决这些问题的办法:微型版Nutch。
  5. 可以说Google是Hadoop的思想之源(Google在大数据方面的三篇论文) 
  6. 2003-2004年,Google公开了部分GFS和MapReduce思想的细节,以此为基础Doug Cutting等人用了2年业余时间实现了DFS和MapReduce机制,使Nutch性能飙升。
  7. 2005 年Hadoop 作为 Lucene的子项目 Nutch的一部分正式引入Apache基金会。
  8. 2006 年 3 月份,Map-Reduce和Nutch Distributed File System (NDFS) 分别被纳入到 Hadoop 项目中,
  9. Hadoop就此正式诞生,标志着大数据时代来临。
  10. 名字来源于Doug Cutting儿子的玩具大象

3. Hadoop 三大发行版本

Hadoop 三大发行版本:Apache、Cloudera、Hortonworks。Apache 版本最原始(最基础)的版本,对于入门学习最好。Cloudera 在大型互联网企业中用的较多。
Hortonworks 文档较好。

1.Apache Hadoop

官网地址:http://hadoop.apache.org/releases.html

下载地址:https://archive.apache.org/dist/hadoop/common/

2.Cloudera Hadoop

官网地址:https://www.cloudera.com/downloads/cdh/5-10-0.html 下载地址:http://archive-primary.cloudera.com/cdh5/cdh/5/
(1)2008 年成立的 Cloudera 是最早将Hadoop 商用的公司,为合作伙伴提供 Hadoop 的商用解决方案,主要是包括支持、咨询服务、培训。
(2)2009 年 Hadoop 的创始人 Doug Cutting 也加盟 Cloudera 公司。Cloudera 产品主要为CDH,Cloudera Manager,Cloudera Support
(3)CDH 是 Cloudera 的 Hadoop 发行版,完全开源,比 Apache Hadoop 在兼容性,安全性,稳定性上有所增强。
(4)Cloudera Manager 是集群的软件分发及管理监控平台,可以在几个小时内部署好一个 Hadoop 集群,并对集群的节点及服务进行实时监控。Cloudera Support 即是对 Hadoop 的技术支持。
(5)Cloudera 的标价为每年每个节点 4000 美元。Cloudera 开发并贡献了可实时处理大数据的 Impala 项目。

3.Hortonworks Hadoop

官网地址:https://hortonworks.com/products/data-center/hdp/ 下载地址:https://hortonworks.com/downloads/#data-platform
(1)2011 年成立的 Hortonworks 是雅虎与硅谷风投公司Benchmark Capital 合资组建。
(2)公司成立之初就吸纳了大约 25 名至 30 名专门研究 Hadoop 的雅虎工程师,上述工程师均在 2005 年开始协助雅虎开发 Hadoop,贡献了 Hadoop80%的代码。
(3)雅虎工程副总裁、雅虎Hadoop 开发团队负责人Eric Baldeschwieler 出任Hortonworks 的首席执行官。
(4)Hortonworks 的主打产品是Hortonworks Data Platform(HDP),也同样是 100%开源的产品,HDP 除常见的项目外还包括了 Ambari,一款开源的安装和管理系统。
(5)HCatalog,一个元数据管理系统,HCatalog 现已集成到 Facebook 开源的 Hive 中。Hortonworks 的 Stinger 开创性的极大的优化了Hive 项目。Hortonworks 为入门提供了一个非常好的,易于使用的沙盒。
(6)Hortonworks 开发了很多增强特性并提交至核心主干,这使得Apache Hadoop 能够在包括 Window Server 和 Windows Azure 在内的 Microsoft Windows 平台上本地运行。定价以集群为基础,每 10 个节点每年为 12500 美元。
 

4. Hadoop 的优势

1)高可靠性:Hadoop底层维护多个数据副本,所以即使Hadoop某个计算元素或存储出现故障,也不会导致数据的丢失。
2)高扩展性:在集群间分配任务数据,可方便的扩展数以千计的节点。
3)高效性:在MapReduce的思想下,Hadoop是并行工作的,以加快任务处理速度。
4)高容错性:能够自动将失败的任务重新分配。

5.Hadoop组成

5.1 Hadoop1.x 与 Hadoop2.x 的区别

大数据Hadoop 大数据hadoop是什么_人工智能

5.1.1 HDFS 架构概述

HDFS(Hadoop Distributed File System)的架构概述

1)NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、文件权限),以及每个文件的块列表和块所在的DataNode等。

2)DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。

3)Secondary NameNode(2nn):用来监控HDFS状态的辅助后台程序,每隔一段时间获取HDFS元数据的快照。

5.1.2 YARN 架构概述
 

大数据Hadoop 大数据hadoop是什么_big data_02

5.1.3 MapReduce 架构概述

MapReduce 将计算过程分为两个阶段:Map 和Reduce

1)Map 阶段并行处理输入数据

2)Reduce 阶段对 Map 结果进行汇总

6. 大数据技术生态体系

大数据Hadoop 大数据hadoop是什么_big data_03

图中涉及的技术名词解释如下:
1)Sqoop:Sqoop 是一款开源的工具,主要用于在Hadoop、Hive 与传统的数据库(MySql)间进行数据的传递,可以将一个关系型数据库(例如:MySQL,Oracle 等)中的数据导进到Hadoop 的 HDFS 中,也可以将HDFS 的数据导进到关系型数据库中。
2)Flume:Flume 是 Cloudera 提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。

3)Kafka:Kafka 是一种高吞吐量的分布式发布订阅消息系统,有如下特性:

(1)通过 O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以 TB 的消息存储也能够保持长时间的稳定性能。
(2)高吞吐量:即使是非常普通的硬件 Kafka 也可以支持每秒数百万的消息。
(3)支持通过 Kafka 服务器和消费机集群来分区消息。
(4)支持Hadoop 并行数据加载。

4)Storm:Storm 用于“连续计算”,对数据流做连续查询,在计算时就将结果以流的形式输出给用户。
5)Spark:Spark 是当前最流行的开源大数据内存计算框架。可以基于 Hadoop 上存储的大数据进行计算。
6)Oozie:Oozie是一个管理Hdoop作业(job)的工作流程调度管理系统。7)Hbase:HBase是一个分布式的、面向列的开源数据库。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。
8)Hive:Hive 是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的 SQL 查询功能,可以将 SQL语句转换为 MapReduce 任务进行运行。 其优点是学习成本低,可以通过类 SQL 语句快速实现简单的 MapReduce 统计,不必开发专门的MapReduce 应用,十分适合数据仓库的统计分析。
10)R 语言:R 是用于统计分析、绘图的语言和操作环境。R 是属于GNU 系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。

11)Mahout:Apache Mahout 是个可扩展的机器学习和数据挖掘库。

12)ZooKeeper:Zookeeper是Google的Chubby一个开源的实现。它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、名字服务、分布式同步、组服务等。ZooKeeper的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。