短短几年时间,大数据这个词便已家喻户晓。但在大数据这个名词被命名之前,人类对数据的搜集与分析已有着悠久的历史。从人工统计分析到电脑/大型机再到今天的分布式计算平台,数据处理速度飞速提高的背后则是整体架构的不断演进。今天大数据架构最火热的莫过于Hadoop,Spark和Storm这三种,而Spark和Storm这两个后起之秀更是抢了不少Hadoop的风头,也让网上逐渐开始有一种声音说Hadoop的日
转载
2023-08-21 10:32:34
57阅读
Q1:什么是hadoop?Hadoop是Apache软件基金会支持可靠的、可扩展的一个开源的分布式计算框架的工程。具体而言,Apache Hadoop软件库是一个允许使用简单编程模型跨计算机集群处理大型数据集合的框架,其设计的初衷是将单个服务器扩展成上千个机器组成的一个集群为大数据提供计算服务,其中每个机器都提供本地计算和存储服务。 Hadoop工程包括以下模块:Hadoop
转载
2024-06-17 14:12:36
26阅读
1) Storm与Hadoop的定义与架构有什么不同?Hadoop是一个可以对海量数据进行分布式处理的软件框架,是Apache的一个项目。Storm是一个能够实时处理流式的分布式计算系统,是Apache基金会的孵化的一个项目。2) 应用场景有什么不同?Hadoop是分布式批处理计算,主要是进行批处理,较多用其进行数据挖掘和分析。2) 应用场景有什么不同?Storm是分布式实时计算,主要特点是实时性
转载
2023-09-01 08:27:23
52阅读
目录 Spark Streaming概述一、Apache SparkSpark CoreSpark SQLSpark Streaming二、Spark Streaming处理数据的流程1.数据源2.数据处理3.存储结果三、Spark Streaming工作原理Spark Streaming概述目前对于流式数据实时处理方案主要有两种:一条一条数据的处理,它的实时性很高,亚秒级别,延迟性非常
转载
2023-09-09 22:07:47
60阅读
一、 比较 Storm: 分布式实时计算,强调实时性,常用于实时性要求较高的地方 Hadoop:分布式批处理计算,强调批处理,常用于数据挖掘、分析 二、 优点 1. 简单编程 在大数据处理方面相信大家对hadoop已经耳熟能详,基于Google Map/Reduce来实现的Hadoop为开发者提供了map、reduce原语,使并行批处理程序变得非常地简单和优美。同样,Storm也为大
转载
2024-06-17 09:34:41
19阅读
一、资源调度对比Hadoop MapReduceV2(Yarn) 框架 Hadoop从 0.23.0 版本开始,Hadoop 的 MapReduce 框架完全重构,发生了根本的变化。新的 Hadoop MapReduce 框架命名为 MapReduceV2 或者叫 Yarn。 &n
转载
2023-11-13 13:05:01
34阅读
Storm入门教程:前言Storm是一个开源的分布式实时计算系统,可以简单、可靠的处理大量的数据流。Storm的部署和运维都很便捷,而且更为重要的是可以使用任意编程语言来开发应用。本教程是一本对storm的基础介绍手册,希望帮助所有愿意使用实时流处理框架的技术同仁。一、实时流计算互联网从诞生的第
转载
2023-05-07 18:42:03
200阅读
strom经典图谱:strom基础TopologiesStreamsSpoutsBoltsStreamgroupingsReliabilityTasksWorkersConfiguration1、Topologies一个topology是spouts和bolts组成的图,通过streamgroupings将图中的spouts和bolts连接起来,如下图:一个topology会一直运行直到你手动ki
原创
2018-09-13 22:41:02
2643阅读
反压机制(BackPressure)被广泛应用到实时流处理系统中,流处理系统需要能优雅地处理反压(backpressure)问题。反压通常产生于这样的场景:短时负载高峰导致系统接收数据的速率远高于它处理数据的速率。许多日常问题都会导致反压,例如,垃圾回收停顿可能会导致流入的数据快速堆积,或者遇到大促或秒杀活动导致流量陡增。反压如果不能得到正确的处理,可能会导致资源耗尽甚至系统崩溃。反压机制就是指系
转载
2024-05-24 23:30:44
43阅读
有以下四个不同:1. 解决问题的层面不一样Hadoop和Apache Spark两者都是大数据框架,但是各自存在的目的不尽相同。Hadoop实质上更多是一个分布式数据基础设施: 它将巨大的数据集分派到一个由普通计算机组成的集群中的多个节点进行存储,意味着您不需要购买和维护昂贵的服务器硬件。 同时,Hadoop还会索引和跟踪这些数据,让大数据处理和分析效率达到前所未有的高度。Spark,则是那么一
转载
2023-09-26 15:52:54
48阅读
首先Spark是借鉴了mapreduce并在其基础上发展起来的,继承了其分布式计算的优点并改进了mapreduce明显的缺陷。 但是二者也有不少的差异具体如下:ApacheSpark 是专为大规模数据处理而设计的快速通用的计算引擎。Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类HadoopMapReduce的通用并行计算框架,Spark拥有Had
转载
2023-08-01 22:14:37
69阅读
文章目录Hadoop(伪分布)+ Spark(Local)软件安装及环境配置前言一、安装虚拟机1.下载Ubuntu16.04镜像二、Hadoop安装及配置(伪分布式)1.创建hadoop用户2.更新apt3.安装SSH、配置SSH无密码登陆4.安装Java环境5.安装Hadoop3.1.36.Hadoop伪分布式配置三、安装 Spark2.4.01.下载Spark2.4.02.安装Spark(L
转载
2023-11-18 23:36:04
9阅读
Spark框架一、Spark概述1.1 Spark是什么1.2 Spark & Hadoop1.3 Spark / Hadoop(1)Hadoop MapReduce(2) Spark1.4 Spark核心模块 一、Spark概述1.1 Spark是什么Spark是一种基于内存的快速、通用、可扩展的大数据分析计算引擎。1.2 Spark & HadoopSpark与Hadoop的
转载
2023-09-01 11:06:45
75阅读
目的 首先需要明确一点,hadoophe spark 这二者都是大数据框架,即便如此二者各自存在的目的是不同的。Hadoop是一个分布式的数据基础设施,它是将庞大的数据集分派到由若干台计算机组成的集群中的多个节点进行存储。Spark是一个专门用来对那些分布式存储的大数据进行处理的工具,spark本身并不会进行分布式数据的存储。两者的部署 Hadoop的框架最核心的设计就是:HDFS和MapRedu
转载
2023-07-12 11:53:59
70阅读
Spark概述什么是SparkSpark是一种基于内存的快速、通用、可扩展的大数据分析计算引擎。Spark和Hadoop的区别Spark 和Hadoop 的区别:HadoopHadoop 是由 java 语言编写的,在分布式服务器集群上存储海量数据并运行分布式分析应用的开源框架,专用于数据批处理的框架,有存储也有计算,但是核心是计算且是离线计算。作为 Hadoop 分布式文件系统,HDFS 处于
转载
2023-09-01 11:06:55
56阅读
大数据相关书籍(包含Java, Scala, R, Linux, Spark, Hadoop, Hive, Hbase, Sqoop, Flume, Strom)
下面书ampler,J
原创
2022-11-28 15:44:09
89阅读
Flink全景图实时处理框架StromStrom是第一代实时处理框架,基于流处理,数据吞吐量和延迟上效果不理想,只支持at least once和at most once,不能保证精确一次性,在数据准确性上存在不足SparkStreaming第二代实时处理框架,基于mini-batch思想,每次处理一小批数据,一小批数据包含多个事件,以接近事实处理效果,概况性来说是微批次、准实时Flink第三代实
转载
2024-02-03 09:45:18
59阅读
运行 Spark 示例 注意,必须安装 Hadoop 才能使用 Spark,但如果使用 Spark 过程中没用到 HDFS,不启动 Hadoop 也是可以的。此外,接下来教程中出现的命令、目录,若无说明,则一般以 Spark 的安装目录(/usr/local/spark)为当前路径,请注意区分。 在 ./examples/src/main 目录下有一些 Spark 的示例程序,有 Scala、J
准备工作一:创建一个HBase表这里依然是以student表为例进行演示。这里假设你已经成功安装了HBase数据库,如果你还没有安装,可以参考大数据-04-Hbase入门,进行安装,安装好以后,不要创建数据库和表,只要跟着本节后面的内容操作即可。因为hbase依赖于hadoop,因此启动和停止都是需要按照顺序进行
如果安装了独立的zookeeper
启动顺序: hadoop-> zookee
转载
2023-07-13 11:19:03
72阅读
这两天在搭建Hadoop与Spark的平台,要求是能够运行Spark,并且用python编程。笔者也不打算写一个很详细的细节教程,简单做一个笔记blog。1.选择 笔者一开始是在虚拟机上搭建的,创建了三个ubuntu虚拟机,然后开始布置分布式系统,但是,后来发现,资源完全不够用。笔者台式机16G内存,2T硬盘,i7第四代处理器,然而,还是被ha
转载
2023-08-29 17:05:02
89阅读