目录1、常用设定2、模型训练2.1、单GPU训练2.2、使用多个GPU进行训练3、模型推理1、常用设定1)默认使用4个GPU的分布式训练。2)ImageNet上所有pytorch样式的预训练主干都是由open-lab团队自己训练的,参考文章https://arxiv.org/pdf/1812.01187.pdf。其中ResNet样式主干基于ResNetV1c变体,其中输入主干中的7x7转换被三个3
转载 2024-08-23 07:56:00
273阅读
项目简介Forward 是一款腾讯平台和内容事业群(PCG)研发的 GPU 高性能推理加速框架。它直接加载主流框架模型(Tensorflow / PyTorch / Keras)转换成 TensorRT 推理加速引擎,帮助用户节省中间繁杂的模型转换或网络构建步骤。相对于直接使用 TensorRT,Forward 更易用以及更容易扩展支持更多模型和算子。目前,Forward 除了覆盖支持主流的 CV
转载 2024-03-08 09:33:50
95阅读
再看看纯集成显卡GPU的mobilenet-ssd 的推理性能,  测试平台是i5 7440HQ, 4核4线程, GPU是Gen9 的GT2, 24EU, 属于纯大白菜集成显卡 首先是FP32模型当Batch size =1时inference request(nireq) = 1时,即同时只有一个推理请求Latency = 13.6ms, Throughtput = 73FP
转载 2024-03-17 14:51:24
252阅读
近来做模型移植,接触到移动端推理框架,做一个总结:1. Android NNAPI:一个基于安卓系统的可在移动设备上运行与机器学习相关的计算密集型操作的C语言API,NNAPI降为更高层次的构建和训练神经网络的机器学习框架(Tensorflow Lite,Caffe2等等)提供底层支持。这些API将会集成到所有的Android 8.1(以及更高版本)设备上。NNAPI高几层的系统架构如下图所示:2
服务器处理性能估算系统的建设,必须满足未来5年业务发展和管理的需求,所以下面对服务器性能指标的估算,将以满足未来5年的需要为基准。1. 数据库服务器1.1. TPCC值估算约定:  系统同时在线用户数为100人(U1);   平均每个用户每分钟发出2次业务请求(N1);  系统发出的业务请求中,更新、查询、统
Window10+YOLOX推理训练(保姆级教程)前言:旷视科技推出了YOLOX,速度可以说是有很大的提升。 看图0.需要的配置本人显卡:GTX1660(6G)IDE:PycharmCuda11.2+cudnn8.2 (注意必须配套)Cuda下载链接CUDNN下载链接(需要登陆,邮箱登录就行)pip list安装Pytorch+ torchvision+torchaudio GPU版pip ins
Tensorflow的训练:使用 TPU 训练 TensorFlow 模型   TPU 简介  什么是 TPU  TPU 代表 Tensor Processing Unit (张量处理单元) ,是由谷歌在 2016 年 5 月发布的为机器学习而构建的定制集成电路(ASIC),并为 TensorFlow 量身定制。  早在 2015 年,谷歌大脑团队就成立
转载 2024-05-28 12:56:25
111阅读
测试机子配置: 1:AMD RX6600(显存8g)+i5 12600KF 16g内存 (台式机) 2:RTX 3070 laptop(显存8g)+i7 10870H 32g内存 (HP暗夜精灵笔记本) 两台电脑平均性能差不多,当然N卡肯定更好一点这边我们还是MS大发好,用MS的DirectML推理框架推理,虽然据小道消息反馈DML推理效率远不如Cuda,但是要知道DirectML的兼容性好啊,除
转载 2024-08-06 13:12:06
186阅读
9 月 26 日,NVIDIA英伟达在北京举行GTC大会,NVIDIA 创始人兼首席执行官黄仁勋在演讲中展示了能够加快人工智能大规模采用速度的全新技术,并介绍了为云服务商、电商和智慧城市提供的各项计算平台服务。 发布AI 推理软件TensorRT 3:可每秒识别 5,200 张图片为满足市场需求,NVIDIA发布了 TensorRT 3 AI 推理软件,该软件能够在生
转载 2024-06-16 09:30:45
169阅读
CUDA存储器模型:GPU片内:register,shared memory;host 内存: host memory, pinned memory.板载显存:local memory,constant memory, texture memory, texture memory,global memory;register: 訪问延迟极低;    &nb
转载 2024-10-24 16:07:40
17阅读
执行 OpenVINO Demos在 open_model_zoo 文件夹下,OpenVINO 给我们提供了许多 Demo ,今天我们就来学习怎么让这些 Demo 运行起来。1. 编译 build_demos_msvc.bat 文件打开 cmd ,进入以下目录:C:\IntelSWTools\openvino_2020.1.033\deployment_tools\inference_engine
前言因项目需要,调研了一下目前市面上一些开源的OCR工具,支持本地部署,非调用API,主要有PaddleOCR/CnOCR/chinese_lite OCR/EasyOCR/Tesseract/chineseocr/mmocr这几款产品。 本文主要尝试了EasyOCR/CnOCR/Tesseract/PaddleOCR这四款产品。EasyOCREasyOCR官方仓库:https://github.
摘要:从显存优化,计算优化两个方面来分析一下如何进行深度学习模型推理优化。作者: ross.xw。前言深度学习模型的开发周期,包括训练阶段和部署阶段。训练阶段,用户需要收集训练数据,定义自己的模型结构,在CPU或者GPU硬件上进行训练,这个过程反复优化,直到训练出满意精度的模型。有了模型之后,我们需要将模型服务部署运行,我们期望服务延迟越低越好,吞吐越高越好。这里会从显存优化,计算优化两个方面来分
 1.2 异构计算最初,计算机只包含用来运行编程任务的中央处理器(CPU)。近年来,高性能计算领域中的主流计算机不断添加了其他处理元素,其中最主要的就是GPUGPU最初是被设计用来专门处理并行图形计算问题的,随着时间的推移,GPU已经成了更强大且更广义的处理器,在执行大规模并行计算中有着优越的性能和很高的效率。CPU和GPU是两个独立的处理器,它们通过单个计算节点中的PCI-Expre
转载 2024-09-27 17:52:44
69阅读
机器推理在深度学习的影响下,准确性越来越高、速度越来越快。深度学习对人工智能行业发展的贡献巨大,这得益于现阶段硬件计算能力的提升、互联网海量训练数据的出现。本篇文章主要介绍深度学习过程中如何选择合适的GPU显卡,如果你是深度学习新手,希望这篇文章对你有帮助。推理用到的硬件分两种,一种是专业AI硬件公司出的AI芯片,一种就是我们平时熟知的GPU显卡了,前者不太适合入门学习,而后者无论从入门难度还是性
转载 2024-05-07 14:52:08
656阅读
GPU :主流众核协处理器GPU+CPU的异构并行体系OpenCL: CPU+GPU异构计算架构CUDA:NVIDIA 2007年推出的GPU通用计算产品cuda优缺点:cuda对于已经在cuda上的数据执行起来很快,但数据从cpu搬到cuda上却很耗时,而且依赖硬件。并发性 concurrency :相对于软件系统硬件支持的并发性叫做并行性并行程序设计模型:任务并行(task paralleli
深度学习推理框架作者介绍1.移动端深度学习推理框架调研1.1 小米的MACE(2017)1.2 阿里的MNN1.3 腾讯的TNN1.4 ARM的tengine1.5 百度的paddle-mobie1.6 Facebook的Caffe2(*)1.7 Google的TensorFlow Lite (*)1.8 Apple的Core ML(*)1.9 OpenVINO(Intel,cpu首选OpenV
神经网络和深度学习入门神经网络松散地模拟人脑中的神经网,是深度学习(DL)的基础,这是一个复杂的数学系统,可以自己学习执行任务。通过查看许多示例或关联,NN可以比传统的识别程序更快地学习连接和关系。训练就是基于对数百万同一类型的样本的学习来配置NN以执行特定任务的过程。例如,一个NN可能聆听许多声音样本并使用DL来学习“识别”特定单词的声音。然后,该NN就可以筛选新的声音样本清单,并使用称为推理
摘要:MindStudio的是一套基于华为自研昇腾AI处理器开发的AI全栈开发工具平台,该IDE上功能很多,涵盖面广,可以进行包括网络模型训练、移植、应用开发、推理运行及自定义算子开发等多种任务。1 MindStudio环境搭建本次实验在MindStudio上进行,请先按照教程 配置环境,安装MindStudio。MindStudio的是一套基于华为自研昇腾AI处理器开发的AI全栈开发工
转载 2024-01-03 22:25:31
122阅读
简介TensorRT是一个高性能的深度学习推理(Inference)优化器,可以为深度学习应用提供低延迟、高吞吐率的部署推理。TensorRT可用于对超大规模数据中心、嵌入式平台或自动驾驶平台进行推理加速。TensorRT现已能支持TensorFlow、Caffe、Mxnet、Pytorch等几乎所有的深度学习框架,将TensorRT和NVIDIA的GPU结合起来,能在几乎所有的框架中进行快速和高
  • 1
  • 2
  • 3
  • 4
  • 5