朴素贝叶斯分类器朴素贝叶斯分类器的训练速度比线性模型更快。这种高效率所付出的代价是,朴素模型的泛化能力要比线性分类器(如 LogisticRegression 和 LinearSVC)稍差。朴素模型如此高效的原因在于,它通过单独查看每个特征来学习参数,并从每个特征中收集简单的类别统计数据。scikit-learn 中实现了三种朴素贝叶斯分类器:GaussianNB、BernoulliN
目录模型1.判别模型与生成模型2. 基于最小风险决策理论3. 高斯判别分析模型(Gaussian Discriminant Analysis)3.1 高斯判别分析(GDA)与LR的关系4. 朴素模型(Gaussian Discriminant Analysis)4.1 后验概率最大化的含义4.2 学习与分类算法4.3 拉普拉平滑5. EM算法(Expectation-Maxim
本节内容:       1、混合高斯模型;文本聚类)       3、结合EM算法,讨论因子分析算法;       4、高斯分布的有用性质。 混合高斯模型将一般化的EM算法流程(下载笔记)应用到混合高斯模型因子
一, 回归大家庭1. 线性回归1.1 线性回归的概念:线性回归就是利用线性回归方程的最小二乘函数对一个或多个自变量和因变量之间的关系进行建模的方法,通俗的说就是通过大量样本的训练,通过有监督的学习找到一个X到Y的映射关系,利用该关系对未知数据进行预测,经常用于房价预测等方面,之所以把其分类到回归问题是因为我们所预测的Y值是连续值。1.2 线性回归的数学形式表达n 为 样本总数 X 为 样本特征 Y
一、朴素分类简介朴素(Naive Bayesian)是基于贝叶斯定理和特征条件独立假设的分类方法,它通过特征计算分类的概率,选取概率大的情况进行分类,因此它是基于概率论的一种机器学习分类方法。因为分类的目标是确定的,所以也是属于监督学习。朴素有如下几种:离散型朴素: MultinomialNB连续型朴素: GaussianNB混合型朴素: MergedNB二、原
朴素是一个很不错的分类器,在使用朴素贝叶斯分类器划分邮件有关于朴素的简单介绍。若一个样本有n个特征,分别用x1,x2,…,xn表示,将其划分到类yk的可能性P(yk|x1,x2,…,xn)为:P(yk|x1,x2,…,xn)=P(yk)∏ni=1P(xi|yk)上式中等号右侧的各个值可以通过训练得到。根据上面的公式可以求的某个数据属于各个分类的可能性(这些可能性之和不一定是1),该数据
可以看到,整个朴素分类分为三个阶段:准备工作阶段,任务是为朴素分类做必要的准备,主要工作是根据具体情况确定特征属性,并对每个特征属性进行适当划分,然后由人工对一部分待分类项进行分类,形成训练样本集合。这一阶段的输入是所有待分类数据,输出是特征属性和训练样本。这一阶段是整个朴素分类中唯一需要人工完成的阶段,其质量对整个过程将有重要影响,分类器的质量很大程度上由特征属性、特征属性划
一、病人分类的例子让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难。某个医院早上收了六个门诊病人,如下表。症状职业疾病打喷嚏护士感冒打喷嚏农夫过敏头痛建筑工人脑震荡头痛建筑工人感冒打喷嚏教师感冒头痛教师脑震荡现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他患上感冒的概率有多大?根据贝叶斯定理:P(A|B) = P(B|A) P(A) / P(B)可得P(感冒|打喷嚏x建筑工人)
贝叶斯定理可以将公式改写为c表示一个分类,f表示属性对应的数据字段这里举个例子,c代表苹果,f代表红色P(苹果|红色)=P(红色|苹果)XP(苹果)/P(红色)通过苹果是红色的条件概率可以得到红色是苹果的条件概率通过先验概率可以算出后验概率一个果子是苹果的概率为0.3 P(c)=0.3一个果子是红色的概率为0.2 P(f)=0.2苹果是红色的概率为0.7  p(f|c)=0.5根据公式可
最近学习了《计算机模式识别》中的分类原理,老师也讲到这种方法的实现过程及Matlab代码实现过程(代码由老师提供),在此感谢我的赵宗泽赵老师。下面我将个人的理解写了篇小文章,希望对需要的朋友有所帮助,理解有误或不足之处还望大家及时指出纠正。整个分类流程: 进行分类首先要进行最大似然估计,得出最大似然估计量然后进行分类。 1.进行最大似然估计首先要生成训练样本: 下面是生成训练样本
一、介绍二、GaussianNB分类简单实践三、理论1)公式及概念2)朴素法的参数估计A、极大似然估计B、估计3)例子四、python实现五、在scikit-learn中 一、介绍朴素分类是一种直观而强大的分类任务算法。朴素分类是在应用贝叶斯定理的基础上进行的,特征之间具有很强的独立性假设。朴素分类用于文本数据分析(如自然语言处理)时,产生了良好的结果。朴素
朴素:基于贝叶斯定理,朴素方法是用于分类的概率模型。当数据集的维数很高时,它们非常有用。贝叶斯定理:  P(A | B )=P(B | A )* P(一)P(B )  使用贝叶斯定理,假设事件B已经发生,我们可以找到事件A发生的概率。在这里,我们认为事件A和事件B是彼此独立的&
朴素是一种极其简单的分类算法,通过概率统计到的方式进行判别。通过特征的联合概率分布P(w1,w2,w3,….wn|C)进行建模,进而得到P(C|w1,w2,w3,….wn).进而转换成一种监督分类的算法公式:目标是根据特征得到属于某一类的概率,哪一类的概率最大则是哪一类。P©根据大数定律,我们通过频率来代替概率。建模关键点还是在于P(W|C)的求解,W为特征向量,则P(W|C)=P(w
  一、贝叶斯定理数学基础  我们都知道条件概率的数学公式形式为  即B发生的条件下A发生的概率等于A和B同时发生的概率除以B发生的概率。  根据此公式变换,得到公式:  即定律是关于随机事件A和B的条件概率(或边缘概率)的一则定律。通常,事件A在事件B发生的条件溪的概率,与事件B在事件A的条件下的概率是不一样的,而定律就是描述二者之间的关系的。  更进一步将公式
转载 2023-11-29 13:15:04
70阅读
个例子:自然语言的二义性     1.2 公式 2. 拼写纠正 3. 模型比较与奥卡姆剃刀     3.1 再访拼写纠正     3.2 模型比较理论(Model Compa
转载 2022-12-19 20:10:30
84阅读
朴素分类 1.1、摘要 分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为分类。本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正式的定义。然后,介绍分类算法的基础——贝叶斯定理。最后,通过实例讨论分类中最简单的一种:朴素分类。 1.
第二部分、分类    说实话,友人刘未鹏有一篇讲的的文章:数学之美番外篇:平凡而又神奇的方法,已第二部分之大部分基本整理自未...
简介 NaïveBayes算法,又叫朴素算法,朴素:特征条件独立;:基于贝叶斯定理。属于监督学习的生成模型,实现简单,没有迭代,并有坚实的数学理论(即贝叶斯定理)作为支撑。在大量样本下会有较好的表现,不适用于输入向量的特征条件有关联的场景。基本思想 (1)病人分类的例子 某个医院早上收了六个门诊病人,如下表:症状  职业   疾病  ——————————————————&nb
贝叶斯分类器原理:基于先验概率P(Y),利用公式计算后验概率P(Y/X)(该对象属于某一类的概率),选择具有最大后验概率的类作为该对象所属类特点:数据可离散可连续;对数据缺失、噪音不敏感;若属性相关性小,分类效果好,相关也不低于决策树朴素算法学习的内容是先验概率和条件概率(都使用极大似然估计这两种概率),公式很难敲,不敲了scikit-learn中根据条件概率不同的分布有多种分类
文章目录算法介绍算法原理算法示例总结 算法介绍方法 方法是以原理为基础,使用概率统计的知识对样本数据集进行分类。由于其有着坚实的数学基础,分类算法的误判率是很低的。方法的特点是结合先验概率和后验概率,即避免了只使用先验概率的主管偏见,也避免了单独使用样本信息的过拟合现象。分类算法在数据集较大的情况下表现出较高的准确率,同时算法本身也比较简单。 [2] 朴素
  • 1
  • 2
  • 3
  • 4
  • 5