对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越。1、SIFT综述尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由 David Lowe在1999年所发表,2004年完善总结。其应用范围包含物体
我们在使用高斯卷积核进行高斯模糊效果时,常常会使用两个一维高斯卷积核来替代二维的高斯卷积核以进行效能优化,而本文将解释为什么要这样做。首先是卷积 卷积的可视化描述,图源:http://pointborn.com/article/2021/7/2/1538.html 对卷积的直观理解:一次卷积操作就是将原图一个区域内的每个像素值,按照卷积核规定的权值加权后映射到结果图的一个像素上
转载
2023-12-15 11:52:13
466阅读
在计算机视觉领域,Python 的 OpenCV 是一个强大的图像处理库。特别是,它提供了多种图像处理算法,包括滤波算法。在很多情况下,我们可能需要应用高斯模糊,这其中涉及到的就是二维高斯核。本文将详细介绍如何通过 Python 和 OpenCV 实现二维高斯核,辅以相关的技术原理、架构解析、源码分析、应用场景以及案例分析。
## 背景描述
使用高斯核来平滑图像是一个经典的图像处理技术。在很多
一维高斯函数我们都熟悉,形式如下:G(x)=12π−−√σexp(−x22σ2) G(x)=12πσexp(−x22σ2)计算机视觉中,高斯滤波使用的高斯核为xx和yy两个一维高斯的乘积,两个维度上的标准差σσ通常相同,形式如下:G(x,y)=12πσ2exp(−x2+y22σ2) G(x,y)=12πσ2exp(−x2+y22σ2)高斯滤波(平滑),即用某一尺寸的二维高斯核与图像进行卷积。高
转载
2023-11-30 22:19:18
194阅读
今天突然想要去试一试opencv里面的高斯模糊怎么实现,虽然以前已经写过很多次关于高斯核的函数了,但是有个好奇点,那就是一般不填sigma这个参数的时候,opencv是怎么计算的。关于具体的高斯函数的讲解,已经有人写的很详细了,我就不赘述了,所以给大家个链接有兴趣的可以去看看。http://www.ruanyifeng.com/blog/2012/11/gaussian_blur.html我这里想
转载
2024-03-08 10:25:14
113阅读
基本原理:在数字图像处理中,一般取二维高斯函数为由(1)可以知道,二维高斯函数,可以看成两个一维高斯函数乘积,因此先计算一维高斯模板,再计算需要的二维高斯模板。两个归一化的一维模板相乘得到的二维高斯模板,同样为归一化结果,例:如图1所示,(a)为两个归一化的一维高斯模板,即,a+b+c=1,d+e+f+g+h=1;(b)为两个一维高斯系数相乘得到的二维高斯模板,ad + ae + af + ag
转载
2024-06-04 23:43:30
210阅读
# Python 实现离散的二维高斯核
高斯核是一种重要的函数,广泛应用于信号处理、图像处理和机器学习等多个领域。离散的二维高斯核可以用于图像平滑、特征提取和进行卷积等操作。本文将介绍如何使用Python实现离散的二维高斯核,并通过一个简单的代码示例进行演示。
## 什么是高斯核?
高斯核函数是基于高斯分布的一种平滑函数,其形式为:
\[
G(x, y) = \frac{1}{2\pi
这里只是用了一层图像 原理框图: 而为了简化计算,我们不直接求二维的高斯卷积核,而是将它变成两个一维的卷积核,原理如下图 1. 构建图像尺度空间(图像的高斯金字塔) 所谓高斯金字塔,是指假设一个金字塔型的结构,金字塔的第一层为原图像,然后将图像做一次高斯平滑(高斯卷积或者高斯模糊),而在高斯平滑里有一个参数σ,然后将σ乘以一个系数k之后得到的值作为新的平滑因子来平滑第二层作为第三层,重复多
转载
2024-09-26 23:49:53
175阅读
OpenCV 五种滤波使用实战(均值、盒状、中值、高斯、双边)〇、Coding实战内容一、滤波、核和卷积1.1 滤波1.2 核 & 滤波器1.3 公式1.4 例子二、图片边界填充实战2.1 解决问题2.2 相关OpenCV函数2.3 Code三. 均值滤波实战3.1 理论3.2 Blur3.3 Code四. 盒状滤波实战4.1 理论4.2 实战:实现Sobel 滤波器五、中值滤波实战5.
转载
2024-10-16 11:54:00
173阅读
在下面的这段代码中,包含了高斯-勒让德、高斯-切比雪夫、以及拉盖尔和埃尔米特型求积公式,它们分别对应了不同的被积积分型 1.代码%%高斯型求积公式
%%Y是函数表达式,interval是求积区间,n是求积阶数
%%对于求一般形式的非反常积分,可用勒让德型,
%%对于求形如f(x)/sqrt(1-x^2)的非反常积分,可用第一类切比雪夫型,
%对于形如f(x)*sqrt(1-x^2)的非反常积
转载
2023-10-23 13:56:20
378阅读
图像滤波基础知识定义:图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像预处理中不可缺少的操作,其处理效果的好坏将直接影响到后续图像处理和分析的有效性和可靠性。**比喻:**我们可以把滤波器想象成一个包含加权系数的窗口,当使用这个滤波器平滑处理图像时,就把这个窗口放到图像之上,透过这个窗口来看我们得到的图像。公式: 种类:低通滤波器可以消除噪声、模糊化,高通滤波器可以提取边
转载
2024-10-23 19:38:07
110阅读
作者:Hohohong图像卷积滤波与高斯模糊1.1 图像卷积滤波对于滤波来说,它可以说是图像处理最基本的方法,可以产生很多不同的效果。以下图来说 图中矩阵分别为二维原图像素矩阵,二维的图像滤波矩阵(也叫做卷积核,下面讲到滤波器和卷积核都是同个概念),以及最后滤波后的新像素图。对于原图像的每一个像素点,计算它的领域像素和滤波器矩阵的对应元素的成绩,然后加起来,作为当前中心像素位
# Python 二维高斯分布的科普与应用
高斯分布(也称为正态分布)是统计学中最重要的概率分布之一。它在许多领域中发挥着重要的作用,尤其是在机器学习和数据分析中。本文将向你介绍二维高斯分布的概念,并通过 Python 代码示例来演示其生成和可视化过程,同时我们将用流程图和甘特图帮助梳理内容。
## 一、什么是二维高斯分布?
二维高斯分布是指定义在二维空间中的高斯分布。在一个二维高斯分布中,
这篇文章以通俗易懂的语言和方式解释了如何使用高斯函数模糊一张图片。1、一维高斯函数: a表示得到曲线的高度,b是指曲线在x轴的中心,c指width(与半峰全宽有关),图形如下: 2、根据一维高斯函数,可以推导得到二维高斯函数: 在图形上,正态分布是一种钟形曲线,越接近中心,取值越大,越远离中心,取值越小。 计算平均值的时候,我们只需要将"中心点"作为原点,其他点按照其在正态曲线上的
转载
2023-11-27 19:01:10
640阅读
本文将简化卡尔曼滤波器。希望你能学习并揭开你在学习卡尔曼过滤器中让你感觉到神秘的东西。要了解卡尔曼滤波器,我们需要了解基础知识。在卡尔曼滤波器中,分布由所谓的高斯分布给出。什么是高斯分布高斯是位置空间上的连续函数,下面的区域总和为1。 高斯的特征在于两个参数,平均值,通常缩写为希腊字母μ(Mu),以及高斯的宽度,通常称为方差σ2(Sigma square)。因此,我们任务是保持μ和σ2
转载
2023-12-10 19:29:07
434阅读
最近有感于部分网友对高斯模糊滤镜的研究,现总结如下。高斯模糊是数字图像模板处理法的一种。其模板是根据二维正态分布(高斯分布)函数计算出来的。 正态分布最早由A.棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性
转载
2023-12-19 22:23:35
367阅读
因为高斯卷积核计算具有可分离的性质,其计算过程的复杂度比不可分离的卷积要高,因此直接对比自己实现的3D高斯卷积与高性能库IPP的执行情况是没意义的。但是,只进行一维卷积,对比两个版本是有参考价值的。本篇通过Intel高性能计算库IPP中的卷积计算API实现一维卷积,并记录程序耗时情况,同时与 C++性能优化系列——3D高斯核卷积计算(二)FMA向量化计算一维卷积 中只通过编译器向量化版本对比性能。
转载
2023-12-18 22:00:20
82阅读
图像噪声使图像在获取或是传输过程中收到随机信号干扰,妨碍人们对图像理解及分析处理的信号。非常多时候将图像噪声看做多维随机过程,因而描写叙述噪声的方法全然能够借用随机过程的描写叙述,也就是使用随机过程的描写叙述,也就是用它的高绿分布函数和概率密度分布函数。图像噪声的产生来自图像获取中的环境条件和传感元器件自身的质量,图像在传输过程中产生图像噪声的主要因素是所用的传输信道收到了噪声的污染。以下简介两种
转载
2024-04-05 08:15:31
99阅读
# Python 二维高斯拟合指南
在数据分析和机器学习中,经常需要拟合数据以寻找最佳模型。二次高斯(Gaussian)分布是一种重要的概率分布,应用广泛。在这篇文章中,我们将学习如何使用 Python 进行二维高斯拟合。以下是整个流程及步骤的概述。
## 流程概述
下面的表格展示了实现“Python 二维高斯拟合”的主要步骤:
| 步骤 | 描述
# 如何实现Python中的二维高斯矩阵
大家好!今天我们要学习如何在Python中实现二维高斯矩阵。二维高斯矩阵广泛应用于图像处理、机器学习和数据分析等领域。接下来,我们将通过几个步骤来实现这个目标。为了更好地理解这一过程,我们将按照下面的流程进行。
## 实现流程
| 步骤 | 描述 |
|------|------|
| 1 | 导入必要的库 |
| 2 | 定义二维高斯函