前言人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。 ———-摘自百度百科说明环境:Ubuntu16.04 语言: Python 依赖:OpenCV+matplotlib加载人脸模型在我们安装OpenCV好以后,在目录下会有很多的
总结: AE(自编码器):编码->n维向量->直接解码 VAE(变分自编码器):编码->n维向量->每个维度使用正态分布拟合->每个维度采样形成新的n维向量->解码 CVAE(条件VAE):每个维度用拟合后的分布均值要和目标图片一致 VQVAE(向量量化自编码器):编码->n维向量->每个维度使用cookbook找到最近向量->解码 注意VQV
## 使用PyTorch实现变分自编码器(VAE)的流程 变分自编码器(VAE)是一种流行的生成模型,可以用于图像生成、数据降维等任务。下面的内容将会详细介绍如何利用PyTorch实现一个简单的VAE,并提供一个明确的步骤和代码示例。 ### 实现流程 以下是实现VAE的基本流程: | 步骤 | 描述 |
原创 2024-08-17 04:51:35
259阅读
一句话说明:AE简单来说就是encode先压缩真实样本成一个隐变量(一般用z表示),在逆向decode还原生真实样本通大小的新样本。调整中间参数,使得前后样本尽量相似或相同,这样中间隐变量就能展现原来样本的特征了。VAE在此基础上,生成Z前,添加方差(即噪音),构成一个分布式结构,其它基本与AE相同。    一、简单介绍 变分自编码器(Variational Autoencod
本节内容学习了:模型自定义的三种方式:Sequential, Modile List,Module dict;当模型有重复出现的层结构,我们可以构建模型块实现复用来构建复杂模型;如果要对模型进行修改:通过实例化来修改特定的层、通过在forward中增加参数来增加输入(要注意修改函数体内增加的输入是如何起作用的、对应的模型的定义也要进行修改)、通过return特定的值来实现额外输出;模型的读取和保存
如果需要小编其他论文翻译,请移步小编的GitHub地址    上一篇博客先搭建了基础环境,并熟悉了基础知识,本节基于此,再进行深一步的学习。  接下来看看如何基于PyTorch深度学习框架用简单快捷的方式搭建出复杂的神经网络模型,同时让模型参数的优化方法趋于高效。如同使用PyTorch中的自动梯度方法一样,在搭建复杂的神经网络模型的时候,我们也可以使用PyTorch中已定义的类
VAE 模型是一种有趣的生成模型,与GAN相比,VAE 有更加完备的数学理论(引入了隐变量),理论推导更加显性,训练相对来说更加容易。VAE 可以从神经网络的角度或者概率图模型的角度来解释。VAE 全名叫 变分自编码器,是从之前的 auto-encoder 演变过来的,auto-encoder 也就是自编码器,自编码器,顾名思义,就是可以自己对自己进行编码,重构。所以 AE 模型一般都由两部分的网
 1. 前言促使我学习OpenGL新版本的一大动力,就是对改善渲染质量的渴望。谈到渲染,就不能不提光照模型。好的光照模型,对物体的真实感渲染起到至关重要的作用。本章我将从光照模型这个主题切入,来谈一谈如何通过编写shader来控制光照。注:本章的部分内容为主观叙述,未经严格的认证,如有问题,请以OpenGL新版教材为准。关于新版本的一些基础知识,如VBO,VAO的绑定,管线编程机制等,在
Keras搭建GAN生成MNIST手写体GAN简介生成式对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。在GAN模型中,一般存在两个模块: 分别是生成模型(Generative Model)和判别模型(Discriminative Model);二者的互相博弈与学习将会产生相当好的输出。原始
axios({ method: 'post', url: '/faceDiscern', data: formData, }).then(function (response) { alert(response.data.data); window.locatio
半监督VAE模型PyTorch中的实现 在深度学习的领域中,变分自编码器(Variational Autoencoder, VAE)已经成为生成模型的重要组成部分。最近,随着半监督学习的兴起,半监督VAE被提出以应对这些任务。半监督VAE结合了有标签和无标签数据的特性,具有更好的泛化能力。本文将深入探讨半监督VAEPyTorch中的实现过程。 引言 在机器学习中,有标签的数据通常是稀缺的
原创 6月前
70阅读
1. 写在前面 前几天看了cgcookie的一个教程,学习了下怎么根据已有人物模型制作一个仿版的NPC人物,感觉挺好玩的,整理一下放到博客里!先看一下教程里面的最终效果。是不是很像个幽灵~下面是我在自己的工程中实验的结果。中间是游戏角色,两遍两个就是NPC啦。这种技术得到的效果和贴图关系很大,所以如果效果不好再画一张贴图吧2. 实现实现非常简单,一共包含三个部分:改变Mesh材质,给Mesh添加P
目录 广义的文本生成,其他数据源转换成文本 机器翻译的历程 机器翻译的历程 规则、统计、神经网络 RNN的结构 transformer的结构 encoder编码 self-attention 多层迭代 并行计算,距离更短 优势,flops,每秒的浮点数运算次数 困惑度,LSTM并不是参数量越大效果越好 参数量越来越大性能瓶颈 API》算子》cuda kernel 原因 优化方向 形象比喻算子融合
在本文中,介绍了使用人脸设计或草图来制作人脸照片的想法。该技术的应用包括角色设计、教育培训、面部变形
## 实现 VAE(Variational Autoencoder)的步骤和代码解析 ### 1. 介绍 在开始之前,让我们先简要了解一下 VAE(Variational Autoencoder)。 VAE 是一种生成模型,它结合了自编码器(Autoencoder)和变分推断(Variational Inference)的思想。VAE 可以用于学习数据的潜在表示,并用于生成新的数据样本。
原创 2023-08-16 16:29:06
186阅读
1.简介上一篇文章里我们介绍了【图像生成】的GAN及其改进WGAN,还有对应的condition条件生成代码。这篇文章主要介绍另外一种生成网络VAE。2.原理VAE相对于GAN来说像是一种相反的存在:GAN是输入latent生成图像,再用生成的图像去修正网络;而VAE是输入图像生成latent,让latent的尽量接近原数据集的分布。这两者是不是有种奇妙的转置的感觉?让我们从头来理解下VAE的由来
关于自编码器的原理见另一篇博客 : 编码器AE & VAE这里谈谈对于变分自编码器(Variational auto-encoder)即VAE的实现。 1. 稀疏编码首先介绍一下“稀疏编码”这一概念。       早期学者在黑白风景照片中可以提取到许多16*16像素的图像碎片。而这些图像碎片几乎都可由64种正交的边组合得到。而且组
转载 2023-11-11 21:31:42
164阅读
《异常检测——从经典算法到深度学习》0 概论1 基于隔离森林的异常检测算法 2 基于LOF的异常检测算法3 基于One-Class SVM的异常检测算法4 基于高斯概率密度异常检测算法5 Opprentice——异常检测经典算法最终篇6 基于重构概率的 VAE 异常检测7 基于条件VAE异常检测8 Donut: 基于 VAE 的 Web 应用周期性 KPI 无监督异常检测9 异常检测资料汇总(持续
转载 2023-08-07 15:30:14
635阅读
目录1 生成模型分类 1 2 Autoregressive model 2 3 变分推断 3 3.1 ELBO 3 3.2 变分分布族Q 5 4 VAE 6 5 GAN 6 6 flow模型 7 7 EM算法 8 8 DDPM 81 生成模型分类生成模型(Generatitve Models)在传统机器学习中具有悠久的历史。 主要有如下几种生成模型:autoregressive models 、V
  • 1
  • 2
  • 3
  • 4
  • 5