所有的机器学习算法都或多或少的依赖于对目标函数最大化或者最小化的过程。我们常常将最小化的函数称为损失函数,它主要用于衡量模型的预测能力。在寻找最小值的过程中,我们最常用的方法是梯度下降法,这种方法很像从山顶下降到山谷最低点的过程。虽然损失函数描述了模型的优劣为我们提供了优化的方向,但却不存在一个放之四海皆准的损失函数损失函数的选取依赖于参数的数量、局外点、机器学习算法、梯度下降的效率、导数求取的
理解损失的优缺点,才能更好地结合任务组合不同的损失函数。导言在机器学习中,损失函数是代价函数的一部分,而代价函数是目标函数的一种类型[1]。Loss function损失函数:用于定义单个训练样本与真实值之间的误差。Cost function代价函数:用于定义单个批次/整个训练集样本与真实值之间的误差。Objective function目标函数:泛指任意可以被优化的函数损失函数是用于衡量模型所
文章目录Regression lossMean Square Error, Quadratic loss, L2 LossMean Absolute Error, L1 LossMSE and MAEHuber Loss, Smooth Mean Absolute ErrorLog-Cosh Loss and Quantile LossClassification lossBinomial De
YOLOV1提出论文:You Only Look Once: Unified, Real-Time Object Detection1、物体检测经典方法two-stage(两阶段):Faster-rcnn Mask-Rcnn系列one-stage(单阶段):YOLO系列 最核心的优势:速度非常快,适合做实时检测任务!但是缺点也是有的,效果通常情况下不会太好!2、机器学习分类任务评价指标3、YO
1 内容介绍随着当今时代科技不断地飞速发展,科技信息也在急剧增加,收集并挖掘分析这些来源多样化的科技信息,有助于推动科技的发展。而预测作为一种重要的数据研究方法,在各个行业各个领域都有着广泛的应用。因此,面对数量如此庞大且繁杂的科技信息,如何对其进行有效地利用来实现科技发展趋势的预测及分析,具有重要的研究意义。针对传统的预测模型大多存在准确度低、收敛速度慢的问题,并且为达到长时预测的效果,提出一种
文章目录一:FCN介绍二:针对FCN的Deeplab-VGG优雅改进三:Hole算法四:多孔金字塔池化(ASPP)的提出五: Fully-Connected CRFs六:Deeplab v3+完全体 一:FCN介绍  FCN对图像实际进行了像素级别的分类,将每个像素都看作一个训练样本,不仅要预测其类别,还要计算其 softmax 分类的损失。这一进展解决了语义级别的图像分割问题FCN相当于图像分
作者:Prince Grover编译:ronghuaiyang 导读 为模型选择合适的损失函数,让模型具有最好的效果。机器学习中的所有算法都依赖于函数的最小化或最大化,我们称之为“目标函数”。一组最小化的函数称为“损失函数”。损失函数是衡量预测模型在预测预期结果方面做得有多好。求函数最小值的一种常用方法是“梯度下降法”。把损失函数想象成起伏的山,而梯度下降就像从山上滑下来到达最低点。没有一个单
转载 2024-04-23 16:11:18
71阅读
        学习人工智能快半年了,从ML到DL,又忘了前面的知识,于是在此总结一下在机器学习中常用的损失函数和导函数,以便以后复习。文中内容仅为笔者总结,仅供大家参考,其中若有错误请大家批评指正。在机器学习问题中,主要可分为回归和分类两大问题。一、回归问题回归问题主要关注的是一个唯一的因变量(需要预测的值)和一个或多个数值型的自变量(预测变量)之间的关系
损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。模型的结构风险函数包括了经验风险项和正则项,通常可以表示成如下式子:  θ∗=argminθ1N∑i=1NL(yi,f(xi;θ))+λΦ
代价函数 梯度下降 正则化线性回归 模型 y=f(x)=w⋅x+b y=f(x)=0.3345⋅x+121.271、模型度量函数损失函数(Loss Function)度量单样本预测的错误程度,损失函数值越小,模型就越好。常用的损失函数包括:0-1损失函数、平方损失函数、绝对损失函数、对数损失函数等代价函数(Cost Function)度量全部样本集的平均误差。常用的代价函数包括均方误差、均方根误差
码字不易,欢迎点个赞,谢谢!引言 对于二分类问题逻辑回归是经常被采用的方法,逻辑回归算法就是在样本数据中寻找一个超平面,然后可以把样本数据准确的分隔成不同的类别,并且能够对相应的新数据特征进行分类。 比如上图所示的两类数据样本,怎么寻找一个超平面(直线)分割开红色、蓝色样本?如果新给出一个样本的特征如何预测该样本属于哪个类别?提出逻辑回归算法的假设函数 回顾线性回归中的假
无论在机器学习还是深度领域中,损失函数都是一个非常重要的知识点。损失函数(Loss Function)是用来估量模型的预测值 f(x) 与真实值 y 的不一致程度。我们的目标就是最小化损失函数,让 f(x) 与 y 尽量接近。通常可以使用梯度下降算法寻找函数最小值。回归模型中的三种损失函数包括:均方误差(Mean Square Error)、平均绝对误差(Mean Absolute Error,M
机器学习的所有算法都需要最大化或者最小化目标函数,在最小化场景下,目标函数又称损失函数。实际应用中,选取损失函数需要从多个角度考虑,如是否有异常值、算法、求导难度、预测值的置信度等等。损失函数可分为两大类,分类问题的损失函数回归问题的损失函数, 本文将对比分析回归问题中最常用的5个损失函数。1、均方误差(又称MSE、L2损失) 回归问题中最常见的损失函数。如果对所有样本点只给出一个预测值,那么这
机器学习分为有监督学习,无监督学习,半监督学习,强化学习。对于逻辑回归来说,就是一种典型的有监督学习。 既然是有监督学习,训练集自然可以用如下方式表述: 对于这m个训练样本,每个样本本身有n维特征。再加上一个偏置项x0, 则每个样本包含n+1维特征: 其中 x∈Rn+1, x0=1, y∈{0,1} 李航博士在统计学习方法一书中给分类问题做了如下定义: 分类是监
损失函数是用于衡量模型所作出的预测离真实值(Ground Truth)之间的偏离程度。通常,我们都会最小化目标函数,最常用的算法便是“梯度下降法”(Gradient Descent)。损失函数大致可分为两种:回归损失(针对连续型变量)和分类损失(针对离散型变量)。一、回归损失(Regression Loss) L1 Loss(绝对值损失函数)也称为Mean Absolute Error,即平均绝对
DeepLabV3+神经网络解析论文:Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation什么是DeeplabV3+网络deeplabV3+主要结构主干网络(DCNN)空洞卷积(膨胀卷积)空洞空间卷积池化金字塔(atrous spatial pyramid pooling (ASPP))
  损失函数(loss function)是用来估量模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。模型的结构风险函数包括了经验风险项和正则项,通常可以表示成如下式子:Φ是正则化项(regularizer)或者叫惩罚项(penalty ter
# Python LSTM绘制损失函数 在深度学习中,损失函数是衡量模型预测值与真实值之间差异的一种方法。LSTM(长短期记忆)是一种循环神经网络(RNN)的变种,广泛应用于自然语言处理、语音识别等领域。在训练LSTM模型时,我们经常需要绘制损失函数的曲线来评估模型的性能和训练过程。本文将介绍如何使用Python绘制LSTM模型的损失函数曲线。 ## LSTM简介 在深度学习中,RNN是一种
原创 2024-01-04 09:09:34
272阅读
Python 绘制损失函数 LSTM 的过程 为了帮助刚入行的小白实现“Python 绘制损失函数 LSTM”,我将为他提供以下步骤和相应的代码。 步骤一:导入必要的库 首先,我们需要导入一些必要的库,包括 numpy、matplotlib 和 keras。下面是代码示例: ```python import numpy as np import matplotlib.pyplot as pl
原创 2024-01-09 11:05:36
95阅读
目录语法(常用)说明示例        lsim函数:lsim函数是针对线性时不变模型,给定任意输入,得到任意输出。lsim函数表示任意输入函数的响应,连续系统对任意输入函数的响应可以利用lsim函数求取。语法(常用)分子分母形式lsim(num,den,u,t)传递函数形式lsim(sys,u,t)状态空间形式lsi
  • 1
  • 2
  • 3
  • 4
  • 5