梯度梯度(gradient)的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。 当然,梯度的概念也可以推广到三元函数的情形。同样,该梯度方向与取得最大方向导数的方向一致,而它的模为方向导数的最大值。同样的,在单变量的实值函数的情况,梯度只是导数,或者,对于一个线性函数,也
目录梯度下降二维空间梯度下降法问题定义算法思想和推导一维问题就是不断求导,直到达到我们设置的精度Python 代码实现一维问题三维空间梯度下降代码展示补充:泰勒展开式的意义泰勒展示的作用梯度下降梯度下降是什么鬼?【可视化讲解 高中生都说懂】_哔哩哔哩_bilibili二维空间梯度下降法Python实现简单的梯度
原创
2022-09-21 13:03:19
317阅读
梯度是机器学习领域中一个非常常用且重要的一个数学概念,但是一直不是特别理解深层含义,于是查阅资料,对梯度进行一个总结说明。我们在高数中都学过梯度的定义:设函数在平面区域D内具有一阶连续偏导数,则对每一点都可以定出一个向量称为在P点处的梯度,记作。从定义中我们可以得到以下信息:1、梯度是矢量 2、梯度的模与函数在点处的偏导数有关。不难想象,函数在几何空间中实际上
一、 梯度下降过程梯度下降法的核心是最小化目标函数,其中是模型的参数,。它的方法是在每次迭代中,对每个变量,按照目标函数在该变量梯度的相反反向,更新对应的参数值。其中,学习率决定了函数到达(局部)最小值的迭代次数。 采用梯度下降方法来实现优化问题: 我们的优化函数表达式为:, 其中:代表损失函数,:代表参数。 假设参数个数为2,即。 开始时的随机参数为:,这边的为vector即向量。 则我们的优化
问:我们将建立一个逻辑回归模型来预测一个学生是否被大学录取。假设你是一个大学系的管理员,你想根据两次考试的结果来决定每个申请人的录取机会。你有以前的申请人的历史数据,你可以用它作为逻辑回归的训练集。对于每一个培训例子,你有两个考试的申请人的分数和录取决定。为了做到这一点,我们将建立一个分类模型,根据考试成绩估计入学概率。import numpy as np
import pandas as pd
转载
2020-01-12 19:09:00
613阅读
2评论
昨天去看了IMAX的interstellar,不知道是坐太靠前还是信息量太大,楼主看完之后很久都没淡定下来。觉得诺兰兄实在是太拼,非要把20世纪最伟大的几个宏观物理学原理都融到一部三小时不到的片子。其中,楼主脑子被烧得最厉害的就是片尾高潮那个N维空间,于是乎,楼主看完立马就去小(bai)研(du)究了一下,感觉多维空间这一块还是蛮有意思的。 0维:没有维度。例如黑洞中心巨大
原创
2014-11-17 00:41:55
364阅读
我们证明了梯度方法最快的收敛速度只能是 (没有强凸假设的话),但是前面的方法最多只能达到 1. 加速近似梯度方法首先说我们要考虑的优化问题形式还是 其中 为光滑项,, 为不光滑项,且为闭的凸函数,另外为了证明梯度方法的收敛性,跟前面类似,我们需要引入 Lipschitz-smooth 条件与强凸性质: 其中 ,然后我们就来看看 APG(Accelerated Proximal Gradient
原文链接:http://ihoge.cn/2018/GradientDescent.html最近在看机器学习相关的基础算法原理,意外发现一个大神的分享网页,简洁并且语言精炼,思路很清楚,仔细研究会对算法原理有新的理解,另外还有代码分享,可以手码.引言李航老师在《统计学习方法》中将机器学习的三要素总结为:模型、策略和算法。其大致含义如下:模型:其实就是机器学习训练的过程中所要学习的条...
转载
2021-09-01 16:13:48
917阅读
1、无约束最优化问题求解此问题的方法方法分为两大类:最优条件法和迭代法。2、最优条件法我们常常就是通过这个必要条件去求取可能的极小值点,再验证这些点是否真的是极小值点。当上式方程可以求解的时候,无约束最优化问题基本就解决了。实际中,这个方程往往难以求解。这就引出了第二大类方法:迭代法。最优条件法:最小二乘估计3、迭代法(1)梯度下降法(gradient descent),又称最速下降法(steep
参考: https://yjango.gitbooks.io/superorganism/content/ti_du_xia_jiang_xun_lian_fa.htmlhttps://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw==&mid=2650720663&idx=3&sn=d9f671f77be23a148d1830448154a
SGD(随机梯度下降)详解名词解释SGD vs BGD效率方面优化方面SGD优势SGD劣势 名词解释名词定义original-loss整个训练集上的lossminibatch-loss在一个mini batch上的lossBGD最原始的梯度下降算法,为了计算original-loss上的梯度,需要使用训练集全部数据SGD(近似)计算original-loss梯度时,只使用一个mini batch
6.梯度下降?①梯度下降是迭代法的一种,可以用于求解最小二乘问题;②在求解机器学习算法的模型参数,即无约束优化问题时,主要有梯度下降(Gradient Descent)和最小二乘法。③在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值;④如果需要求解损失函数的最大值,可以通过梯度上升法来迭代。梯度下降法和梯度上升法可相互转换;⑤在机器学习中,梯度下降法
CS299课程的笔记为什么梯度方向下降最快方向导数定义:函数在某一特定方向上的
原创
2022-08-04 22:00:31
189阅读
首先是对感知器的简单回顾,假设现有的训练集为 D,共有 n 个训练数据,每个数据都有 m 个输入特征和一个输出标签。一个 epoch 就是遍历一次整个训练集,对于每一个训练数据,都计算其预测、计算误差、更新参数。 在一个 epoch 中,每次针对一个训练数据进行参数更新的方法,称为在线方法或者随机梯度下降;而在一个 epoch 中将参数在每个训练数据上需要更新的值记录下来,最后叠加在一起再对参数
什么是梯度下降: 梯度下降可拆分为梯度+下降,在一阶函数中,某一点的梯度表示函数在该点处的导数(导数的正负号表示函数上升的方向),梯度下降是基于微积分中导数的概念,大部分的机器学习模型都有直接或间接地运用梯度下降的算法。1.梯度下降的目的: 在机器学习模型中,都会有一个损失函数;其中,损失函数的
在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练。其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点。下面我们以线性回归算法来对三种梯度下降法进行比较。一般线性回归函数的假设函数为: 对应的损失函数为:&nb
梯度下降法是一种求函数最小值的算法。在机器学习中,预测值和实际值之间的差称为误差。将所有数据点上的所有误差加在一起时称为成本。当然,我们希望最小化代表此成本的函数 - 成本函数。在机器学习中梯度下降是什么意思呢?通过使用称为反向传播的技术来训练神经网络。梯度下降是反向传播的一个非常重要的部分。梯度下降法是一种非常流行的方法来调整机器学习模型的参数,以达到最小的误差状态。机器学习算法是告诉机器学习数
随机梯度下降法1. 概念 那个梯度值准确的求出来。 那么通过推导的这个公式可以看出来,要想求出这个准确的梯度来,在这个式子中每一项都要对所有的样本( 个)进行一下计算,前面是有一个求和计算的,那么这样的一个下降法通常又叫做批量梯度下降法(Batch Gradient Descent)。也就是说,每一次计算的过程都要将样本中所有的信息批量的进行计算,但是这显然就带来了一个问题,如果我们的 个样
梯度下降法本算法由梯度下降所引申: 对于优化问题: 使用梯度下降: 注意,alpha也是可以算的:求一个a使得f(x0+aP0)最小,是求函数极值的,这时候是关于a的一个函数,所以对a求导求极小值,复合函数求导法则最后就会得到求导等于0,这时候的点是驻点,就是导数值为0的点,因为二阶导数黑塞矩阵正定,所以一定为极小值点。这时候就求出了在P0方向上的最小值点。 图中()意味内积。共轭和预备知识共轭: