我们已经知道,普通的logistic回归只能针对二分类(Binary Classification)问题,要想实现多个类别的分类,我们必须要改进logistic回归,让其适应多分类问题。关于这种改进,有两种方式可以做到。第一种方式是直接根据每个类别,都建立一个二分类器,带有这个类别的样本标记为1,带有其他类别的样本标记为0。假如我们有个类别,最后我们就得到了个针对不同标记的普通的logistic分
一、离散选择模型(Discrete Choice Model, DCM)常见的DCM模型:二项Logit(Binary Logit)、多项Logit(Multi-nominal Logit)、广义Logit(Generalized Logit)、条件Logit(Conditional Logit)、层式Logit(Nested Logit)、有序Logit/Probit(Ordered Logit
转载
2024-01-02 20:58:30
1826阅读
今天给大家介绍两个多分类任务中的经典网络模型LeNet5和AlexNet。内容源来自“有三AI”,感兴趣的读者可以关注公众号“有三AI”。首先要给大家普及以下网络深度和网络宽度的概念,强调一点,池化层是不算入网络深度的。网络的深度:最长路径的卷积层+全连接层的数量,这是深度学习最重要的属性。如图,以简单的LeNet5网络为例,网络中包含3个卷积层,2个全连接层,所以网络深度等于5。C1+C3+C5
转载
2023-09-27 18:47:43
245阅读
机器学习中,遇见的往往是二分类问题比较多,二分类模型的模型评价准则很多,Auc_score,F1_score,accuracy等等都是比较常用的。而针对多分类问题来说,有些二分类的评价准则就相对而言不怎么适用了。虽然可以将多分类问题转化为多个2vs2问题进行讨论,步骤繁杂的同时效果也得不到保障。目前在进行多模态的一个分类研究,在模型评价时也废了不少脑筋,所以在这里将看到的比较常用的多分类评价准则进
转载
2023-10-02 16:56:20
208阅读
多分类模型和多任务模型(Multi-task Model)的区别在于:多分类模型:样本集包含多个类别,但是一个样本只属于一类。多任务模型:样本集包含多个类别,一个样本可以属于多个类别。一、多分类模型1、多分类模型使用交叉熵损失函数。在计算时其实就是-log(pt),对一个样本来说,pt就是该样本真实的类别,模型预测样本属于该类别的概率。例如某样本的label是[0,1,0],模型预测softmax
转载
2023-09-16 00:04:36
505阅读
目前商业上广泛使用的编程语言多是命令式或函数式的编程语言,这些语言在某些方面具有很高的相似度,比如 python 和 ruby 在很多地方是相通的,学会了一门,再学另一门便能够事半功倍,很多语言都是如此,然而今天要介绍的这门语言,却跟主流编程语言截然不同,它就是prolog——一门逻辑编程语言。prolog 是 Programming in Logic 的缩写,它被广泛应用
在日常生活中总是有给图像分类的场景,比如垃圾分类、不同场景的图像分类等;今天的文章主要是基于图像识别场景进行模型构建。图像识别是通过 Python深度学习来进行模型训练,再使用模型对上传的电子表单进行自动审核与比对后反馈相应的结果。主要是利用 Python Torchvision 来构造模型,Torchvision 服务于Pytorch 深度学习框架,主要是用来生成图片、视频数据集以及训练模型。模
转载
2023-08-01 17:50:15
157阅读
# Python多分类模型简介
在机器学习领域中,多分类问题是指将数据分为三个或三个以上的类别。在这篇文章中,我们将介绍如何使用Python构建多分类模型,以及如何对模型进行评估。
## 多分类模型概述
多分类模型是一种监督学习模型,用于将数据分为多个类别。常见的多分类模型包括逻辑回归、决策树、随机森林等。在本文中,我们将使用逻辑回归模型来演示多分类问题的处理方法。
## 数据准备
首先
原创
2024-04-26 06:04:45
65阅读
分类算法的性能度量是指对分类算法的泛化性能评估,是衡量模型泛化能力的评价标准,泛化性能评价指标可以定量的评价泛化性能优劣。常用的一些指标有准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1-score等。下面以二分类问题为例介绍分类算法的性能评价指标。二分类性能度量我们以西瓜好坏的预测为例,正例:好瓜,反例:坏瓜,对于二分类问题,将样本依据真实的类别和分类器的预
转载
2023-11-27 10:55:47
522阅读
机器学习或者是日常生活中,遇见的往往是二分类问题比较多,二分类模型的模型评价准则很多,Auc_score,F1_score,accuracy等等都是比较常用的。而针对多分类问题来说,有些二分类的评价准则就相对而言不怎么适用了。虽然可以将多分类问题转化为多个2vs2问题进行讨论,步骤繁杂的同时效果也得不到保障。目前在进行多模态的一个分类研究,在模型评价时也废了不少脑筋,所以在这里将看到的比较常用的多
转载
2023-12-15 12:47:56
102阅读
随机森林也是非线性有监督的分类模型 随机森林是由多个决策树组成。是用随机的方式建立一个森林,里面由很多决策树组成。随机森林中每一棵决策树之间都是没有关联的。得到随机森林之后,对于一个样本输入时,森林中的每一棵决策树都进行判断,看看这个样本属于哪一类,最终哪一类得到的结果最多,该输入的预测值就是哪一类。 随机森林中的决策树生成过程是对样本数据进行行采样和列采样,可以指定随机森林中的树的个数和属性个数
转载
2024-04-20 22:43:35
181阅读
多分类问题softmax的分类器为什么要探索多分类之前我们在处理糖尿病数据集的时候我们只是有两种分类,但是很多情况的数据集不只有两种,例如MNIST数据集就是手写数字的数据集有10种不同的标签。所以我们必须有处理多种分类标签的能力。探索多分类是否还可以使用二分类的操作?当然还是可以使用二分类的方法来解决这个问题,某分类设置位p=1其他全部p=0就可以了,还是使用交叉熵损失函数来处理。这里我们要注意
转载
2023-09-27 17:28:54
442阅读
记:新闻分类问题时多分类问题,与电影评论分类很类似又有一些差别,电影评论只有两个分类,而新闻分类有46个分类,所以在空间维度上有所增加,多分类问题的损失函数与二分类问题选择不同,最后一层使用的激活函数不同,其他基本流程都是一样的。1、路透社数据集:包含许多短新闻及其对应的主题,是一个简单的,广泛使用的文本分类数据集,包含46个不同的主题,每个主题至少有10个样本,其中有8982个训练样本和2246
转载
2023-08-08 15:01:30
475阅读
其实这个比赛早在19年的时候就结束,比赛名为《Understanding Clouds from Satellite Images》,原来的任务其实不仅要识别出来类型还要能够分割出来具体的区域,这里我只是基于这个卫星云数据集来实践多标签分类模型,所以分割就留给以后有时间在做了。 官方地址在这里
转载
2024-02-23 10:44:43
15阅读
本文不涉及细节理论,只做必要性的介绍,侧重代码实现。线性模型-多分类问题的理论分析只有二分类是完全不够用的,因此需要其他的算法来解决多分类问题。多分类分为OvO(One vs One)和OvR(One vs Rest).OvO:一对一,例如n个分类,两两一组使用二分类,最后选出二分类出来最多的情况,需要n(n-1)/2个分类器OvR:一对多,例如n个分类,一次性比较这n个分类中的概率,找出概率最大
转载
2023-08-04 20:41:56
372阅读
文章目录准确率(accuracy)aucaverage_precision平衡准确率(balanced accuracy)brier_score_loss Brier分数损失class_likelihood_ratios 二元分类的正似然比和负似然比classification_report 主要分类指标报告cohen_kappa Cohen的kappaconfusion_matrix 混淆矩阵
转载
2024-01-28 02:46:34
345阅读
基于逻辑回归的分类预测 基本概念:逻辑回归也被称为广义线性回归模型,它与线性回归模型的形式基本上相同,都具有 ax+b,其中a和b是待求参数,其区别在于他们的因变量不同,多重线性回归直接将ax+b作为因变量,即y = ax+b,而logistic回归则通过函数L将ax+b对应到一个隐状态p,p = L(ax+b),然后根据p与1-p的大小决定因变量的值。逻辑回归 原理简介: 以二分类为例。(事实上
转载
2024-04-03 15:39:03
271阅读
Logistic回归分类模型的应用①自定义绘制ks曲线的函数import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
font = {
'family': 'FangSong',
'weight': 'bold',
'size': 12
}
matplo
转载
2024-05-17 15:18:07
73阅读
机器学习常见的分类器算法有:逻辑回归LR 支持向量机SVM 决策树DT 随机深林RF 贝叶斯算法Bayes起初设计的目的多是针对二分类问题,而我们在实际应用中总会遇到多分类问题,应该如何实现.常见的几种方法:(1)直接法,直接在目标函数上进行修改,将多个分类面的参数求解合并到一个最优化问题中,通过求解该最优化问题“一次性”实现多类分类。这种方法看似简单,但其计算复杂度比较高,实现起来比较困难,只适
转载
2023-12-16 12:00:35
104阅读
这是一篇关于决策树分类模型的详解,身边的朋友看完的都说:这回透彻了!目录0 写在前面1 决策树分类模型1.1 信息熵1.2 基尼系数2 决策树分类模型的建立3 总结一下0 写在前面机器学习分为有监督学习和无监督学习,有监督学习又可以分为分类和回归两大类。本文介绍的决策树分类模型属于有监督学习中的分类算法,也就是说:我们的训练数据有一组与之对应的目标数据,这组目标数据是一组不连续的、存在重复的值。我
转载
2023-08-25 17:44:55
457阅读