对比度: 对比度指不同颜色之间的差别。对比度越大,不同颜色之间的反差越大,即所谓黑白分明,对比度过大,图像就会显得很刺眼。对比度越小,不同颜色之间的反差就越小。亮度: 亮度指照射在景物或图像上光线的明暗程度。图像亮度增加时,就会显得耀眼或刺眼,亮度越小时,图像就会显得灰暗。色调: 色调是各种图像色彩模式下原色的明暗程度,级别范围从0到255,共256级色调。例如对灰度图像,当色调级别为255时,就
spark sql 可以说是 spark 中的精华部分了,我感觉整体复杂度是 spark streaming 的 5 倍以上,现在 spark 官方主推 structed streaming, spark streaming 维护的也不积极了, 我们基于 spark 来构建大数据计算任务,重心也要向 DataSet 转移,原来基于 RDD 写的代码迁移过来,好处是非常大的,尤其是在性能方面,有质的
转载 9月前
35阅读
# Spark与Impala对比:大数据处理的选择 在当今大数据时代,Apache Spark和Apache Impala都是非常流行的分布式数据处理工具。它们都旨在帮助用户处理和分析大量数据,但在设计理念、使用场景和性能特性上存在显著差异。本文将详细比较这两种技术,并提供代码示例,帮助读者更好地理解两者的优缺点。 ## 一、基本概念 ### Spark Spark是一个快速的通用计算引擎
原创 8月前
74阅读
想了解SparkStreaming 和Kafka Stream的区别,首先我们需要先了解一下Spark Streaming和Kafka Stream.什么是Spark Streaming?Spark Streaming是核心Spark API的扩展,可让其用户执行实时数据流的流处理。它从Kafka,Flume,Kinesis或TCP套接字等来源获取数据。可以使用复杂的算法对这些数据进行进一步处理,
1、Spark在SQL上的优化,尤其是DataFrame到DataSet其实是借鉴的Flink的。Flink最初一开始对SQL支持得就更好。 2、Spark的cache in memory在Flink中是由框架自己判断的,而不是用户来指定的,因为Flink对数据的处理不像Spark以RDD为单位,就是一种细粒度的处理,对内存的规划更好。 3、Flink原来用Java写确实很难看
转载 2023-07-26 13:38:23
91阅读
Benchmarking Streaming Computation Engines: Storm, Flink and Spark Streaming[1]简介:雅虎发布的一份各种流处理引擎的基准测试,包括Storm, Flink, Spark Streaming动机:贴近生产环境,使用Kafka和Redis进行数据获取和存储,设计并实现了一个真实的流处理基准。结论:由于只是一篇基准测试报告,其
转载 2024-08-28 16:38:28
37阅读
一、什么是SparkApache Spark 是专为大规模数据处理而设计的快速通用的计算引擎。Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行框架。Spark,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是——Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因
转载 2023-07-12 09:57:21
441阅读
ClickHouse 是一款由俄罗斯Yandex公司开源的OLAP数据库,拥有者卓越的性能表现,在官方公布的基准测试中,ClickHouse的平均响应速度是Vertica的2.63倍、InfiniDB的17倍、MonetDB的27倍、Hive的126倍、MySQL的429倍以及Greenplum的10倍。自2016年开源以来,ClickHouse一直保持着飞速的发展,是目前业界公认的OLAP数据库
正文Apache Kylin 和 ClickHouse 都是目前市场流行的大数据 OLAP 引擎;Kylin 最初由 eBay 中国研发中心开发,2014 年开源并贡献给 Apache 软件基金会,凭借着亚秒级查询的能力和超高的并发查询能力,被许多大厂所采用,包括美团,滴滴,携程,贝壳找房,腾讯,58同城等;OLAP 领域这两年炙手可热的 ClickHouse,由俄罗斯搜索巨头 Yandex 开发
作者:Vlad Ilyushchenko,QuestDB的CTO在QuestDB(https://questdb.io/),我们已经建立了一个专注于性能的开源时间序列数据库。我们创建QuestDB是为了将我们在低延迟交易方面的经验以及我们在该领域开发的技术方法带到各种实时数据处理用途中。QuestDB的旅程始于2013年的原型设计,我们在去年HackerNews发布会期间发表的一篇文章中描述了20
转载 2024-08-02 19:21:01
263阅读
面向列存的DBMS新的选择Hadoop从诞生已经十三年了,Hadoop的供应商争先恐后的为Hadoop贡献各种开源插件,发明各种的解决方案技术栈,一方面确实帮助很多用户解决了问题,但另一方面因为繁杂的技术栈与高昂的维护成本,Hadoop也渐渐地失去了原本属于他的市场。对于用户来说,一套高性能,简单化,可扩展的数据库产品能够帮助他们解决业务痛点问题。越来越多的人将目光锁定在列存的分布式数据库上。Cl
最近网上和各大公司在对比spark 和flink , 也有一部分人,演讲时不分析代码原理,不根据事实,直接吹嘘flink比spark好,flink 能干掉spark 的话,今天就跟大家从技术,应用和未来发展角度对两个产品进行对比。先说产品特性:1.spark中批处理使用 RDD, 流处理使用 DStream,flink中批处理使用 Dataset, 流处理使用 DataStreams。目前flin
1. SparkSQL概述1.1 SparkSQLSpark SQL是Spark用于结构化数据(structured data)处理的Spark模块。 与基本的Spark RDD API不同,Spark SQL的抽象数据类型为Spark提供了关于数据结构和正在执行的计算的更多信息。 在内部,Spark SQL使用这些额外的信息去做一些额外的优化,有多种方式与Spark SQL进行交互,比如: SQ
转载 2024-04-17 10:29:24
98阅读
尽管Hadoop在分布式数据分析领域备受瞩目,但还是有其他选择比典型的Hadoop平台更具优势。最近很多人都在讨论Spark这个貌似通用的分布式计算模型,国内很多机器学习相关工作者都在研究和使用它。Spark是一种可伸缩(scalable)的基于内存计算(In-Memory Computing)的数据分析平台,比Hadoop集群存储方法更有性能优势。Spark采用Scala语言实现,提供了单一的数
转载 2023-09-14 13:04:01
78阅读
一、引言GraphX之前,需要先了解关于通用的分布式图计算框架的两个常见问题:图存储模式和图计算模式。二、图存储模式2013年,GraphLab2.0将其存储方式由边分割变为点分割,在性能上取得重大提升,目前基本上被业界广泛接受并使用。2.1 边分割(Edge-Cut)  每个顶点都存储一次,但有的边会被打断分到两台机器上。这样做的好处是节省存储空间;坏处是对图进行基于边的计算时,对于一条两个顶点
为什么选择Tez为什么要用Tez在分布式系统中要存储海量的数据,因为构建了一个非商务的机器上能够运行的hdfs分布式存储空间,而且这个存储空间是低成本的并且具有良好的扩展性。那么,很多企业都会将海量的存储数据迁移到Hadoop上,而摒弃之前用的ioe方式。然后,在利用Hive和Pig提供的类SQL语句完成我们的大规模的数据处理,以应对数据挖掘以及数据准备的应用场景。为什么这么选择,是因为存储廉价和
转载 2023-08-08 15:38:48
149阅读
文章目录1.0什么是Hadoop2.0什么是Spark3.0什么是Tez4.0三者之间的关系5.0Mr,Tez,Spark对比 1.0什么是Hadoop1)hadoop简介  Hadoop是一个由Apache基金会所开发的分布式系统基础架构。 Hadoop实现了一个分布式文件系统HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的硬件上;而且它提供高吞吐量来访问应用程序的数据,适合那些
转载 2023-08-08 09:13:15
144阅读
 在流式计算领域,同一套系统需要同时兼具容错和高性能其实非常难,同时它也是衡量和选择一个系统的标准。在这个领域,Flink和Spark无疑是彼此非常强劲的对手。1. Flink VS Spark 之 APISpark与Flink API情况如下:Spark与Flink 对开发语言的支持如下所示:2. Flink VS Spark 之 ConnectorsSpark 支持的Connecto
转载 2023-08-29 16:57:17
105阅读
在批处理时代,Hive一枝独秀;在实时交互式查询时代,呈现出的是百花齐放的局面。Hive onTez, Hive on Spark, Spark SQL, Impala等等,目前看也没有谁干掉谁的趋势。引用今年图灵奖得主Michael Stonebraker的话说,现在的数据库领域已经不是”one size fit all”的时代了。那么面对这么多系统,我们改如何选择呢?这里谈谈这些系统的区别和优
5.9 MapReduce与Tez对比Tez是一个基于Hadoop YARN构建的新计算框架,将任务组成一个有向无环图(DAG)去执行作业,所有的作业都可以描述成顶点和边构成的DAG。 Tez为数据处理提供了统一的接口,不再像MapReduce计算引擎一样将任务分为作业Map和Reduce阶段。在Tez中任务由输入(input)、输出(output)和处理器(processor)三部分接口组成,处
转载 2024-06-12 21:51:09
155阅读
  • 1
  • 2
  • 3
  • 4
  • 5