总体介绍用户洞察平台的定位通过对三方受众数据的汇聚、清洗、智能运算,构建了庞大的精准人群数据中心,提供丰富的用户画像数据以及实时的场景识别力。 无缝对接各类业务平台的数据应用,如广告平台,PUSH推送,个性化推荐之间建立了数据通道,支持公司级的精准营销,消息及时送达服务等等。营销效果评估,反馈数据可进一步加工,用于提升画像标签质量。核心需求用户洞察的核心需求包含了以下几个部分。标签生成:互联网业务
原创
2021-05-06 15:59:04
266阅读
在这个数据驱动的世界里,大数据已经成为企业决策不可或缺的工具。大数据分析指的是利用先进的分析技术处理巨量数据集,从中提取有价值的信息,帮助企业理解市场动态、客户行为和内部运营效率。对大数据的有效分析能够揭示隐藏的模式和关联,预测未来的市场走向,为企业提供战略上的竞争优势。例如,零售企业可以通过分析消费者购买行为来优化库存管理,金融机构能够通过交易数据分析预防欺诈行为。然而,利用大数据也面临着技术和
大数据是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。 大数据根基于互联网,数据仓库、数据挖掘、云计算等互联网技术的发展为大数据的应用奠定了基础。1.大数据是什么?引用3个比较常用的
转载
2023-08-07 22:44:37
285阅读
本片博客介绍大数据相关的开源系统以及他们对应的一句话简介, 对于各位想大概了解大数据都有哪些开源系统的同学有帮助。各种相关开源系统简介:
如下是Apache基金支持的开源软件hdfs
跟GFS类似, 一个分布式文件系统。
mapreduce
1. Hue是什么HUE=Hadoop User ExperienceHue是一个开源的Apache Hadoop UI系统,由Cloudera Desktop演化而来,最后Cloudera公司将其贡献给Apache基金会的Hadoop社区,它是基于Python Web框架Django实现的。通过使用Hue,可以在浏览器端的Web控制台上与Hadoop集群进行交互,来分析处理数据,例如操
基于Hadoop生态的大多数大数据平台,普遍存在资源弹性不足,无法按需自动扩容、资源利用率低、资源隔离性差、系统管理困难,管理方式不统一等问题。而Kubernetes就能刚刚提到的这些问题。这样看来,大数据平台的容器化演进十分有意义。本篇就将大数据的众多组件拆开来,分析这些常用组件在Kubernetes的部署情况。 文件存储系统HDFS on Kubernetes HDFS主要
一、了解Hadoop关于Hadoop的官方说明是:Apache Hadoop 是一款支持 数据密集型 分布式 应用程序并以 Apache 2.0 许可协议发布的 开源软体框架。拆开来说,其中包含学习 Hadoop 必须要理解的三个知识点:(1)Hadoop是一个框架; (2)可以用来处理大规模数据; (3)Hadoop被部署在集群上。二、Hadoop传统意义上,我们常说的Hadoop是包含了 Co
转载
2023-07-20 17:52:00
485阅读
当你已经准备好实施大数据,请仔细的评估云提供商提供的大数据功能,确保找到最合适的。下面我们来看一下四种云服务产品。当谈到在云端实施大数据战略时,好消息是你会有很多选择。但是,这同时也是一个坏消息。来自Forrester Research最近的一份报告强调,尽管大数据云服务很强大,他们也有可能造成混乱,从而需要企业采用比传统的方式更加灵活,琐碎的方法。该报告的结论是:在云计算领域中没有一种服务是适合
转载
2023-07-30 20:15:25
141阅读
12月15日,阿里巴巴宣布首个商家统一数据平台——生意参谋升级亮相。这被视为阿里利用大数据赋能商家的积极探索。 作为最早应用在阿里巴巴B2B市场的数据工具,生意参谋诞生于2011年,2013年10月走进淘系,2014年、2015年在原有规划基础上分别整合量子恒道、数据魔方,最终升级成为阿里巴巴商家端统一数据产品平台。目前,月均有600万淘宝天猫商家在生意参谋体验一站式、个性化、可定制的商务决策
Hue Web应用的架构Hue 是一个Web应用,用来简化用户和Hadoop集群的交互。Hue技术架构,如下图所示,从总体上来讲,Hue应用采用的是B/S架构,该web应用的后台采用python编程语言别写的。大体上可以分为三层,分别是前端view层、Web服务层和Backend服务层。Web服务层和Backend服务层之间使用RPC的方式调用。Hue整合大数据技术栈架构由于大数据框架
随着移动网络、云计算、物联网等新兴技术迅猛发展,全球数据呈爆炸式增长,标志着我们迎来又一伟大时代——大数据时代,它的到来在不知不觉中改变着人们的生活方式和思维方式,而它对企业产生的影响也更为深远。而今天我们就一起来了解一下,企业大数据应用都面临哪些安全问题。 企业需要关注哪六种大数据安全问题 1、使数据易受攻击 如今,所有数据都是数字化的,并且数量巨大,黑客始终可以在恶意内部人员的帮助下
大数据体系数据平台数据平台是在数以万计的硬件之上建立统一的基础数据存储和计算的服务。数据中台数据中台是抽象了数据能力的共性形成的数据服务能力,是一系列的数据服务,用系统化思路降低数据前台对数据获取的难度,更好的赋能业务。数据平台与数据中台的区别核心区别——是否跟业务强相关数据平台和业务的联系并不密切,其提供基础的存储,计算,调度,数仓工具等基础的技术服务。对于业务数据如何进行存储,数据表如何组织,
转载
2023-10-18 19:23:40
128阅读
一、概述简单来说,就是下面四个特性:多维度数据模型方便的部署和维护灵活的数据采集强大的查询语言实际上,多维度数据模型和强大的查询语言这两个特性,正是时序数据库所要求的,所以 Prometheus 不仅仅是一个监控系统,同时也是一个时序数据库。那为什么 Prometheus 不直接使用现有的时序数据库作为后端存储呢?这是因为 SoundCloud 不仅希望他们的监控系统有着时序数据库的特点,而且还需
2018年国内大数据公司50强榜单排名已经公布了出来,大快以黑马之姿闯入50强,并摘得多项桂冠。Hanlp自然语言处理技术也荣膺了“2018中国数据星技术”奖。对这份榜单感兴趣的可以找一下看看。本篇承接上一篇《DKM平台监控参数说明》,继续就大快的大数据一体化处理架构中的平台监控参数进行介绍和说明。DKhadoop大数据处理平台架构的安装相关文章已经分享过,详细的内容可以找一下看看。在上一篇中已经
prefacePython在大数据行业非常火爆近两年,as a pythonic,所以也得涉足下大数据分析,下面就聊聊它们。Python数据分析与挖掘技术概述所谓数据分析,即对已知的数据进行分析,然后提取出一些有价值的信息,比如统计平均数,标准差等信息,数据分析的数据量可能不会太大,而数据挖掘,是指对大量的数据进行分析与挖倔,得到一些未知的,有价值的信息等,比如从网站的用户和用户行为中挖掘出用户的
转载
2023-08-22 15:40:28
107阅读
讨论一:先来谈谈企业搭建大数据分析平台的背景。1、搭建大数据平台离不开BI。在大数据之前,BI就已经存在很久了,简单把大数据等同于BI,明显是不恰当的。但两者又是紧密关联的,相辅相成的。BI是达成业务管理的应用工具,没有BI,大数据就没有了价值转化的工具,就无法把数据的价值呈现给用户,也就无法有效地支撑企业经营管理决策;大数据则是基础,没有大数据,BI就失去了存在的基础,没有办法快速、实时、高效地
转载
2023-10-20 07:41:18
81阅读
大数据是以互联网为基础的。数据仓库、数据挖掘、云计算等互联网技术的发展为大数据的应用奠定了基础。对于任何一个大数据从业者来说,新的接触,或者会有一种共同的感觉:大数据是非常有用的!那么如何构建大数据分析平台已经成为当前研究的焦点。 大数据并不是一场市场炒作。对于许多跨多个垂直的组织而言,大数据是真实存在的,而且它正在改变数据中心的架构。随着数据量、数据处理速度和数据类型的复杂度以
转载
2023-11-01 23:01:57
151阅读
本篇博客重点介绍如何使用Kylin来构建大数据分析平台。根据官网介绍,其实部署Kylin非常简单,称为非侵入式安装,也就是不需要去修改已有的Hadoop大数据平台。你只需要根据的环境下载适合的Kylin安装包,选择一个Hadoop节点部署即可,Kylin使用标准的Hadoop API跟各个组件进行通信,不需要对现有的Hadoop安装额外的Agent。最底层是数据来源层,我们可以通过Sqoop等工具
转载
2023-07-15 13:58:12
249阅读
大数据平台的整体架构可以由以下几个部分组成:一、业务应用:其实指的是数据采集,你通过什么样的方式收集到数据。互联网收集数据相对简单,通过网页、App就可以收集到数据,比如很多银行现在都有自己的App。更深层次的还能收集到用户的行为数据,可以切分出来很多维度,做很细的分析。但是对于涉及到线下的行业,数据采集就需要借助各类的业务系统去完成。二、数据集成:指的其实是ETL,指的是用户从数据源抽取出所需的
转载
2023-09-08 10:48:38
166阅读
Orange 是一个基于组件的数据挖掘和机器学习软件套装,它的功能即友好,又很强大,快速而又多功能的可视化编程前端,以便浏览数据分析和可视化,基绑定了Python以进行脚本开发。它包含了完整的一系列的组件以进行数据预处理,并提供了数据帐目,过渡,建模,模式评估和勘探的功能。其由C++ 和 Python开发,它的图形库是由跨平台的Qt框架开发。
Rapid