# 大数据处理分层技术架构实现指南
在当今数据驱动的时代,大数据的处理和分析成为了企业决策中的重要组成部分。大数据处理分层技术架构能够帮助开发者构建灵活、高效、可扩展的数据处理系统。本文将为您介绍如何实现这一架构的基本流程与每一步的具体代码实现。
## 1. 大数据处理分层技术架构流程
以下是大数据处理分层技术架构的简要流程:
| 步骤 | 描述
层级全拼职责划分ODS(源数据层)Operational DataStoreODS层存储最原始的数据, 对数据不做任何加工处理;源数据主要来自业务数据库和日志,这些数据是用户操作业务系统产生,所以叫操作型数据(Operational Data) 。DWD(明细层)Data Warehouse DetailDWD层的数据表是对ODS层数据表的关联、字段重命名、清洗、类型转换;一
转载
2023-10-20 15:14:46
316阅读
大数据时代:大数据无处不在! 大数据的主要分析逻辑: 1.做全样而非抽样的分析 2.追求效率 3.追求事件的相关性并非因果 大数据的关键技术 大数据基本处理流程:数据采集、存储管理、处理分析、结果呈现等环节。主要:数据存储与管理(分布式存储)集群 数据处理与分析(分布式处理)集群技术层面: 数据采集与预处理 数据存储和管理 数据处理与分析
转载
2023-07-29 18:56:51
170阅读
大数据系统大体可以分成以下四个部分: 1,数据采集层 2,数据计算层 3,数据服务层 4,数据应用层下图是阿里巴巴大数据系统架构图:一、数据采集层数据采集主要分成以下三块数据: 1,Web 端日志 2,App 端日志 3,第三方数据(比如 mysql 增量数据同步)Web 端和 App 端的日志数据都需要制定各个场景下的埋点规范,用来满足各种通用业务场景下(比如浏览、点击等)的数据分析。Web 端
转载
2023-08-29 20:52:47
755阅读
文章目录2.1 概述2.2 Hadoop项目结构2.3 Hadoop的安装与使用2.4 Hadoop集群 2.1 概述• Hadoop是Apache软件基金会旗下的一个开源分布式计算平台,为用户提供了系统底层细节透明的分布式基础架构 • Hadoop是基于Java语言开发的,具有很好的跨平台特性,并且可以部署在廉价的计算机集群中 • Hadoop的核心是分布式文件系统HDFS(Hadoop Di
转载
2023-08-13 17:57:47
203阅读
文章目录一、Spark概述1、概述二、Spark角色介绍及运行模式1、集群角色三、Spark环境准备1.启动服务2.启动客户端3.spark-submit测试四、Spark Core1、RDD概述2.代码示例1.创建Maven工程,添加依赖五、Spark Streaming1、 Spark streaming简介2.代码示例1、linux服务器安装nc服务2、创建Maven工程,添加依赖3、代码
转载
2023-08-01 20:00:04
158阅读
主题:Spark 大数据处理最佳实践内容框架:大数据概览如何摆脱技术小白Spark SQL 学习框架EMR Studio 上的大数据最佳实践1大数据概览 大数据处理 ETL (Data → Data)大数据分析 BI (Data → Dashboard)机器学习 AI (D
转载
2024-07-18 08:29:23
52阅读
作者: Divakar等摘要:大数据解决方案的逻辑层可以帮助定义和分类各个必要的组件,大数据解决方案需要使用这些组件来满足给定业务案例的功能性和非功能性需求。这些逻辑层列出了大数据解决方案的关键组件,包括从各种数据源获取数据的位置,以及向需要洞察的流程、设备和人员提供业务洞察所需的分析。 概述 这个 “大数据架构和模式” 系列的 第 2 部分 介绍了一种评估大数据解决方案可行性的基于维度的方
转载
2023-07-08 15:59:04
171阅读
Lambda架构Lambda 的由来我们通常认为这个希腊字母与这一模式相关联是因为数据来自两个地方。批量数据和快速的流式数据代表Lambda符号的弯曲部分,然后通过服务层(线段与曲线部分合并)合并,如上图所示。什么是Lambda架构Lambda架构(Lambda Architecture)是由Twitter工程师南森·马茨(Nathan Marz)提出的大数据处理架构。它的目标是构建一个通用的、健
最近在整理整理java大数据处理这一系列的文章,在网上发现一个java写excel文件的方式,非常的有技巧,并且性能非常高,我在自己机器上简单的操作了一下,感觉非常的棒
这里就把这个方法和大家分享一下,一起讨论一下这种方式的成熟度.
简单说明
转载
2023-07-10 21:16:02
198阅读
DStream编程批处理引擎Spark Core把输入的数据按照一定的时间片(如1s)分成一段一段的数据,每一段数据都会转换成RDD输入到Spark Core中,然后将DStream操作转换为RDD算子的相关操作,即转换操作、窗口操作以及输出操作。RDD算子操作产生的中间结果数据会保存在内存中,也可以将中间的结果数据输出到外部存储系统中进行保存。转换操作1:无状态转换操作无状态转化操作每个批次的处
转载
2023-08-10 15:26:57
101阅读
在贴近用户的终端中,会产生最原始的数据;原始的数据会被存储在业务的源系统中;将海量的原始数据,进行数据的筛选,进行有效数据的单独存储;需要有一个数据库,单独的进行业务流程和需求的数据计算结果的保存;最终这个数据需要进行报表页面的可视化展示。 数据在不同的层次中进行抽取、筛选、存储的过程,就叫做数据的ETL。 为什么工作中,项目组的数据要进行数据的分层?使用不同的数据库分层,每一
转载
2024-08-03 13:59:12
99阅读
1.画出文件系统HDFS架构的图,并写出各部件的功能。①NameNode:维护文件元数据FsImage和操作日志EditLog。②SecondaryNameNode:NameNode的备份的进程。③DataNode:存储数据块,为客户端提供文件数据的进程。2.画出批处理系统MapReduce架构图,并写出各部件的功能。①JobTracker:管理Job和Resource的进程。管理Job,将Job
转载
2024-04-21 21:52:49
67阅读
目录一、概述1)Spark特点2)Spark适用场景二、Spark核心组件三、Spark专业术语详解1)Application:Spark应用程序2)Driver:驱动程序3)Cluster Manager:资源管理器4)Executor:执行器5)Worker:计算节点6)RDD:弹性分布式数据集7)窄依赖8)宽依赖9)DAG:有向无环图10)DAGScheduler:有向无环图调度器11)Ta
转载
2023-07-18 22:26:12
116阅读
大数据处理技术 云计算 虚拟化 分布式计算 机器学习 数据仓库
原创
2023-08-03 15:06:29
343阅读
全球首部全面介绍Spark及Spark生态圈相关技术的技术书籍俯览未来大局,不失精细剖析,呈现一个现代大数据框架的架构原理和实现细节透彻讲解Spark原理和架构,以及部署模式、调度框架、存储管理及应用监控等重要模块Spark生态圈深度检阅:SQL处理Shark和Spark SQL、流式处理Spark...
转载
2015-03-26 14:10:00
265阅读
2评论
概述 这个时代被称之为大数据时代,各行各业生产的数据量呈现爆发性增长,并且基于这些爆发性增长的数据做深层次的数据挖掘、分析。因此,我们可以很容易的感觉到,在这样一个大数据的时代,我们很多做事情的方法正在发生了改变。例如,基于大数据分析可以做疾病预测控制;基于大数据分析可以做交通流量预测控制;基于大数据分析可以做大型系统故障诊断预测;基于大数据分析可以做客户消费推荐。可以说,大数据时代可以
转载
2023-08-09 23:08:59
406阅读
物联网系统的数据处理包括实时流式处理和批量离线处理,尤其对实时计算的要求很高,因此需要可以满足海量数据处理的架构。 物联网系统的数据处理需求 Lambda架构Lambda架构在互联网领域是一种非常常见的数据处理架构。将实时处理任务和批处理任务分两条线走。 Lambda架构中实时处理和批处理分开进行 数据从底层的数据源开始,经过各种各样的格式进入大数据平台,在大数据平台中经过Ka
转载
2023-08-30 14:36:21
271阅读
很多事情在执行的时候都是有一定的流程的,那么大数据的处理也不例外,这是因为有关程序都是需要逻辑的,而大数据处理也需要逻辑,这也就需要流程了。那么大数据处理的基本流程是什么呢?下面就由小编为大家解答一下这个问题。大数据处理的第一个步骤就是数据抽取与集成。这是因为大数据处理的数据来源类型丰富,大数据处理的第一步是对数据进行抽取和集成,从中提取出关系和实体,经过关联和聚合等操作,按照
转载
2023-11-02 09:23:12
124阅读
# 大数据处理平台技术架构图实现指南
## 引言
在当今数据驱动的世界中,大数据处理已成为提升企业竞争力的关键。了解大数据处理平台的技术架构是开发者的基本能力。本文将指导你如何设计和实现大数据处理平台的技术架构图,包括步骤、代码示例以及重要的图示。
## 整体流程
设计大数据处理平台的技术架构图可以分为以下几个步骤:
| 步骤 | 描述 |
|--