Multi-Process Service(MPS)原理:    一个GPU卡上同时只能执行一个context;因此多进程同时往一个GPU卡上提交任务时,同时只能有一个任务跑起来,没法多任务并行;    MPS服务:多进程提交的任务先提交至MPS服务进程,该进程会把所有任务使用同一个context但不同的stream, 提交给该块GPU卡,使得可以多任务并行
今天是Numpy专题的第5篇文章,我们来继续学习Numpy当中一些常用的数学和统计函数。 基本统计方法 在日常的工作当中,我们经常需要通过一系列值来了解特征的分布情况。比较常用的有均值、方差、标准差、百分位数等等。前面几个都比较好理解,简单介绍一下这个百分位数,它是指将元素从小到大排列之后,排在第x%位上的值。我们一般常用的是25%,50%和75%这三个值,通过这几个值,我们很容易对于整个特征的分
前言很多时候配置深度学习的环境都会遇到这样一个问题,就是参考的不同的开源代码所用的环境不一定相同,特别是CUDA环境,一般会有CUDA9.0、CUDA10.0、CUDA10.1等版本。所对应的cuDNN也会不同。本文是在已安装CUDA10.0+cudnn7.6.4的基础上,加装CUDA9.0+cudnn7.3.1。一、gcc降级由于CUDA 9.0仅支持gcc6.0及以下版本,而Ubuntu 18
CUDA 是NVIDIA的GPGPU模型,它使用C语言为基础,可以直接以大多数人熟悉的C语言,写出在显示芯片上执行的程序,而不需要去学习特定的显示芯片的指令或是特殊的结构。”CUDA是什么?能吃吗?编者注:NVIDIA的GeFoce 8800GTX发布后,它的通用计算架构CUDA经过一年多的推广后,现在已经在有相当多的论文发表,在商业应用软件等方面也初步出现了视频编解码、金融、地质勘探、科学
有时候有的项目要求很苛刻,有的需要CUDA>9.0,有的又要CUDA>10.0…无可奈何只能安装多个CUDA 文章目录环境配置CUDA下载安装(已存在一个)cuDNN下载安装环境变量配置测试 环境配置CUDA9.2,cuDNN7.1.4想了解如何配置正确的环境,避免包版本的冲突,可以到这里了解一下conda下载各种包时如何避免版本不匹配问题CUDA下载安装(已存在一个)gpu版pyto
转载 2024-04-17 15:31:54
305阅读
一、CUDA简介  CUDA是并行计算的平台和类C编程模型,可以实现并行算法。电脑要配备NVIDIA GPU,就可以在许多设备上运行你的并行程序。 二、CUAD编程  CUDA编程允许程序执行在异构系统上,即CPU和GPU,并由PCL-Express总线区分开。        Host:CPU and itsmemory(host memory) 
转载 2024-10-22 16:14:06
200阅读
前言OpenMMLabb不同订单库需求不同的cuda版本,一直没找到一个完全完整靠谱的教程,这是我参考几个博客完成测试的全过程记录,方便以后操作,无任何商业用途,如有侵权,请联系删除。注:Ubuntu22.04系统,已安装CUDA11.7版本,现在安装CUDA11.3版本 选择指定的CUDA版本,选择你的系统架构版本。【11.3-11.7】注意:芯片架构不懂的可以点击查看解释:Architetur
Ubuntu16.04下安装多版本cuda和cudnn前言因为之前针对Pytorch,caffe,torch等,装了cuda8.0和对应cudnn5.1,但是最近在装MxNet的时候,发现官网上能下载到的MxNet版本仅支持cuda9.0和对应cudnn7.0.5,所以无奈不想卸载cuda8.0只能在电脑上安装多个版本的cuda和对应cudnn。安装cuda好了进入正题,首先安装cuda&nbsp
转载 2024-10-20 21:10:54
145阅读
1、为什么要装CUDA,CUDNN:先来讲讲CPU和GPU的关系和差别吧。截图来自(CUDA的官方文档): 从上图可以看出GPU(图像处理器,Graphics Processing Unit)和CPU(中央处理器,Central Processing Unit)在设计上的主要差异在于GPU有更多的运算单元(如图中绿色的ALU),而Control和Cache单元不如CPU多,这是因为GPU在进行并行
转载 2024-04-16 17:23:18
236阅读
GPU 的硬件基本概念Nvidia的版本:  实际上在 nVidia 的 GPU 里,最基本的处理单元是所谓的 SP(Streaming Processor),而一颗 nVidia 的 GPU 里,会有非常多的 SP 可以同时做计算;而数个 SP 会在附加一些其他单元,一起组成一个 SM(Streaming Multiprocessor)。几个 SM 则会在组成所谓的 TPC(Texture Pr
转载 2024-07-03 21:41:57
76阅读
GPU架构SM(Streaming Multiprocessors)是GPU架构中非常重要的部分,GPU硬件的并行性就是由SM决定的。以Fermi架构为例,其包含以下主要组成部分:CUDA coresShared Memory/L1CacheRegister FileLoad/Store UnitsSpecial Function UnitsWarp SchedulerGPU中每个SM都设计成支持
转载 2024-07-19 15:17:14
169阅读
1.CUDA对应的NVIDIA驱动版本对照表,参考一下表格2.显卡驱动安装,参考这里我这里选择安装的显卡驱动是NVIDIA-Linux-x86_64-410.78.run,安装是否成功,可以输入这个命令nvidia-smi,如果有显示GPU信息,那就是安装成功了。3.cuda安装装cuda首先需要降级:sudo add-apt-repository ppa:ubuntu-toolchain-r/t
转载 2024-07-22 12:41:25
2205阅读
一、典型GPU程序构成一个典型GPU程序有如下几个部分:①CPU在GPU上分配内存②CPU将CPU中的数据copy到GPU中③调用内核函数来处理数据④CPU将GPU中的数据copy到CPU中 *可以看出,四个步骤中有两个是数据的copy,因此如果你的程序需要不断地进行copy,那么运行效率会比较低,不适合利用GPU运算。一般情况下,最好的方式是,让GPU进行大量运算,同时保证计算量与通信
转载 2023-09-08 18:30:55
181阅读
Memory Access Patterns(内存访问模式)大部分device一开始从global Memory获取数据,而且,大部分GPU应用表现会被带宽限制。因此最大化应用对global Memory带宽的使用时获取高性能的第一步。也就是说,global Memory的使用就没调节好,其它的优化方案也获取不到什么大效果,下面的内容会涉及到不少L1的知识,这部分了解下就好,L1在Maxwell之
在配置caffe和tensflow 时,往往需要的CUDA版本不一样,这就需要多个版本的CUDA共存,并且能够随意切换,免去了每次重新安装配置cuda的过程。cuda_8.0.61_375.26_linux.run   文件名说明:前面的cuda_8.0.61代表cuda的版本,后面的375.26代表的对应的NVIDIA驱动的版本1、安装CUDA第二次安装CUDA跟第一次稍微不
目录一、前言二、安装CUDA、cuDNN和PyTorchCUDA的安装cuDNN的安装三、验证是否安装成功一、前言在进行深度学习模型训练时,可以使用CPU训练,但通常比较慢,也可以采用GPU进行加速训练,从而缩短训练时间。目前支持深度学习的显卡只有NIVDIA,AMD是不支持的,因此AMD显卡的用户不用再纠结于CUDA的安装了,直接安装CPU版本的PyTorch就好了。要使用GPU进行加速训练,要
多首先,先来了解一下GPU与CPU的区别,如图 可以看到CPU(Central Processing Unit,中央处理单元),由Control(控制台),ALU(Arithmetic Logic Unit,逻辑计算单元),Cache(高速缓存),而GPU(Graphic Processing Unit,图形处理单元)也是由相同的部件组成,但GPU的计算单元远比CPU多,这就决定了GPU适合大量
零教程的基本概述在深度学习蓬勃发展的今天,模型变得越来越深,参数愈加庞大,虽然准确率不断增长,由于硬件受限,对实际场景部署的要求也越来越高,CUDA 编程成为了一门必备的武林绝学。如果你对模型的推理速度有较高要求,如果你有庞大的数据流等待推理,一起跟着教程了解这门技术。该教程目前暂定有以下章节,如有添加将会另行说明:  通过这些教程,可以说初入了 CUDA 编程的世界,基本学会
cuda,cudnn,安装和tensorflow的gpu调配忙了两周终于安装完了cuda 和 cudnn ,并且成功调用tensorflow的GPU使用!!!1;首先 找自己电脑的适配cuda2;cuda,cudnn,tensorflow版本适配表3;决定适合自己的版本后,开始下载!4;cuda安装:5;安装cudnn6;添加环境变量7;检测环境变量是否添加成功8;在tensorflow中配置G
转载 2024-03-16 08:45:54
184阅读
CUDA的全称是Computer Unified Device Architecture(计算机统一设备架构)。CUDA不只是一种编程语言,它包括NVIDIA对于GPGPU的完整的解决方案:从支持通用计算并行架构的GPU,到实现计算所需要的硬件驱动程序、编程接口、程序库、编译器、调试器等。NVIDIA提供了一种较为简便的方式编写GPGPU代码:CUDA C。我们将一个cuda程序分为两部分:主机端
  • 1
  • 2
  • 3
  • 4
  • 5