有时候有的项目要求很苛刻,有的需要CUDA>9.0,有的又要CUDA>10.0…无可奈何只能安装多个CUDA 文章目录环境配置CUDA下载安装(已存在一个)cuDNN下载安装环境变量配置测试 环境配置CUDA9.2,cuDNN7.1.4想了解如何配置正确的环境,避免包版本的冲突,可以到这里了解一下conda下载各种包时如何避免版本不匹配问题CUDA下载安装(已存在一个)gpu版pyto
转载 2024-04-17 15:31:54
305阅读
前言很多时候配置深度学习的环境都会遇到这样一个问题,就是参考的不同的开源代码所用的环境不一定相同,特别是CUDA环境,一般会有CUDA9.0、CUDA10.0、CUDA10.1等版本。所对应的cuDNN也会不同。本文是在已安装CUDA10.0+cudnn7.6.4的基础上,加装CUDA9.0+cudnn7.3.1。一、gcc降级由于CUDA 9.0仅支持gcc6.0及以下版本,而Ubuntu 18
CUDA 是NVIDIA的GPGPU模型,它使用C语言为基础,可以直接以大多数人熟悉的C语言,写出在显示芯片上执行的程序,而不需要去学习特定的显示芯片的指令或是特殊的结构。”CUDA是什么?能吃吗?编者注:NVIDIA的GeFoce 8800GTX发布后,它的通用计算架构CUDA经过一年多的推广后,现在已经在有相当多的论文发表,在商业应用软件等方面也初步出现了视频编解码、金融、地质勘探、科学
Multi-Process Service(MPS)原理:    一个GPU卡上同时只能执行一个context;因此多进程同时往一个GPU卡上提交任务时,同时只能有一个任务跑起来,没法多任务并行;    MPS服务:多进程提交的任务先提交至MPS服务进程,该进程会把所有任务使用同一个context但不同的stream, 提交给该块GPU卡,使得可以多任务并行
数字万用表使用方法:首先要了解一些基础,比如: power 电源开关 HOLD锁屏按键, B/L一般是为背光灯, 其次要了解 转换开关 V-或DCV 是直流电压挡的意思 V~或ACV交流电压挡的意思 A-或DCA直流电流挡的意思 A~或ACA是交流电流挡的意思, Ω是电阻挡的意思,画一个二极管的符号那个是二极管档也称蜂鸣档,F表示电容挡, H表示电感挡 hfe表示三极管电流放大系数测试挡 一般数字
一、典型GPU程序构成一个典型GPU程序有如下几个部分:①CPU在GPU上分配内存②CPU将CPU中的数据copy到GPU中③调用内核函数来处理数据④CPU将GPU中的数据copy到CPU中 *可以看出,四个步骤中有两个是数据的copy,因此如果你的程序需要不断地进行copy,那么运行效率会比较低,不适合利用GPU运算。一般情况下,最好的方式是,让GPU进行大量运算,同时保证计算量与通信
转载 2023-09-08 18:30:55
181阅读
 通常在程序开始之前并不知道需要多大的显存,程序会去申请GPU的显存的50%比如一个8G的内存,被占用了2G,那么程序会申请4G的显存(因为有足够的剩余显存)如果此时显存被占用7G,那么程序会申请剩下的所有的1G的显存。也许你的程序根本用不着这么多显存,200M也许就够了,这时候如果程序能按照需求去申请就好了,幸运的是,这样的方法是存在的:import tensorflow as tf
转载 2024-03-22 14:32:58
287阅读
一、CUDA驱动安装1.1、CUDA的下载1.2、CUDA的安装1.3、更新补丁的安装CUDA10.2子目录介绍: NVIDIA_CUDA_Development:   CUDA 开发环境 NVIDIA_CUDA_Documentation:CUDA 开发文档 NVIDIA_CUDA_Samples:          CUDA
在配置caffe和tensflow 时,往往需要的CUDA版本不一样,这就需要多个版本的CUDA共存,并且能够随意切换,免去了每次重新安装配置cuda的过程。cuda_8.0.61_375.26_linux.run   文件名说明:前面的cuda_8.0.61代表cuda的版本,后面的375.26代表的对应的NVIDIA驱动的版本1、安装CUDA第二次安装CUDA跟第一次稍微不
今天是Numpy专题的第5篇文章,我们来继续学习Numpy当中一些常用的数学和统计函数。 基本统计方法 在日常的工作当中,我们经常需要通过一系列值来了解特征的分布情况。比较常用的有均值、方差、标准差、百分位数等等。前面几个都比较好理解,简单介绍一下这个百分位数,它是指将元素从小到大排列之后,排在第x%位上的值。我们一般常用的是25%,50%和75%这三个值,通过这几个值,我们很容易对于整个特征的分
目录一、前言二、安装CUDA、cuDNN和PyTorchCUDA的安装cuDNN的安装三、验证是否安装成功一、前言在进行深度学习模型训练时,可以使用CPU训练,但通常比较慢,也可以采用GPU进行加速训练,从而缩短训练时间。目前支持深度学习的显卡只有NIVDIA,AMD是不支持的,因此AMD显卡的用户不用再纠结于CUDA的安装了,直接安装CPU版本的PyTorch就好了。要使用GPU进行加速训练,要
多首先,先来了解一下GPU与CPU的区别,如图 可以看到CPU(Central Processing Unit,中央处理单元),由Control(控制台),ALU(Arithmetic Logic Unit,逻辑计算单元),Cache(高速缓存),而GPU(Graphic Processing Unit,图形处理单元)也是由相同的部件组成,但GPU的计算单元远比CPU多,这就决定了GPU适合大量
Memory Access Patterns(内存访问模式)大部分device一开始从global Memory获取数据,而且,大部分GPU应用表现会被带宽限制。因此最大化应用对global Memory带宽的使用时获取高性能的第一步。也就是说,global Memory的使用就没调节好,其它的优化方案也获取不到什么大效果,下面的内容会涉及到不少L1的知识,这部分了解下就好,L1在Maxwell之
使用 CUDA C/C++ 加速应用程序 简介加速计算正在取代 CPU 计算,成为最佳计算做法。加速计算带来的层出不穷的突破性进展、对加速应用程序日益增长的需求、轻松编写加速计算的编程规范以及支持加速计算的硬件的不断改进,所有这一切都在推动计算方式必然会过渡到加速计算。无论是从出色的性能还是易用性来看,CUDA 计算平台均是加速计算的制胜法宝。CUDA 提供一种可扩展 C、C++、Python 和
本节主要讲述在模型训练时利用gpu对训练进行加速首先我们需要知道gpu不是我们想调用就可以直接调用的,我们需要安装一个cuda工具包以及其对应的cudnn(cuDNN 是用于配置深度学习使用),当我们安装好这两个时才能利用机器学习来进行训练,其次我们的gpu驱动要足够新,他会对版本更低的cuda工具包进行兼容,但更高的不行(不需要降级gpu驱动),最后便是最复杂的问题:版本对应,可以去官网,我使用
周五中午NV显卡送到,安装了驱动和师兄给的toolkit3.2和sdk,发现src里的光线追踪可以编译运行。但是网上下载的一个cuda示例编译不成功,认为配置不正确。晚上去Ada家,周日早上回来,继续配置。因为目的是用CUDA加速图像去噪,所以选择是在单文档程序里编制cu文件和MFC混合。配置是按照VS2008和CUDA配置 一篇文档进行的,但没有严格执行,只是配置到了tool,它的举例是对话框的
一、CUDACUDA(Compute Unified Device Architecture)是由NVIDIA(英伟达)推出的用于并行计算的平台和编程模型。它允许开发人员利用NVIDIA的GPU(图形处理单元)来执行通用计算任务,而不仅仅是图形渲染任务。 几乎所有的编程语言,不使用特定框架,都只能实现CPU编程。二、VTKVTK(Visualization Toolkit)是一个开源的用于3D可视
目前深度学习中比较主流的框架Pytorch,如何支持GPU环境。安装教程如下:首先安装CUDA和cudnn:  CUDA(ComputeUnified Device Architecture),是显卡厂商NVIDIA推出的运算平台。 CUDA是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。(官方解释)下载地址:CUDA Toolkit 11.5 Upda
转载 2023-10-09 15:11:27
290阅读
一、CUDA简介  CUDA是并行计算的平台和类C编程模型,可以实现并行算法。电脑要配备NVIDIA GPU,就可以在许多设备上运行你的并行程序。 二、CUAD编程  CUDA编程允许程序执行在异构系统上,即CPU和GPU,并由PCL-Express总线区分开。        Host:CPU and itsmemory(host memory) 
转载 2024-10-22 16:14:06
200阅读
如何设置Meego SDK 一、设置基于QEMU的Meego模拟器     1,允许图形加速,硬件VT支持,参考 http://wiki.meego.com/MeeGo_SDK_Graphics_Acceleration 。本人的ThinkPadT400是支持VT加速的,可以在cmos中打开此CPU支持,在系统中只需运行如下:     
  • 1
  • 2
  • 3
  • 4
  • 5