聚类系数计算在图论中,集聚系数是图中的点倾向于集聚在一起的程度的一种度量。证据显示:在多数实际网络以及特殊的社会网络中,结点有形成团的强烈倾向,这一倾向的特征是有一个相对紧密的连接(Holland and Leinhardt, 1971[1]; Watts and Strogatz, 1998[2],后者是提出了小世界网络模型)。在实际网络中,这种可能性比随机生成的均匀网络的两个结点间连接的可能性
转载 2024-08-26 20:56:20
174阅读
最近偶尔关注房子的事情,为了方便对大量房产信息制定最符合个人需求的评估,所以本人决定写个小东西出来,于是今天就着手了。本人看房经验有限,加权系数仅根据个人感官给定,总和为100。一共综合考虑了10个影响因素,最后对其加权求均值计算出结果。采用类的方法进行编写,当然完全可以使用数组,但是为了定义一个对象更加方便,且易于修改,本人采用类进行编写。由于涉及权益,文中不给出详细的盘或开发商的名字,也不给予
神经网络CNN)神经网络主要有三个部分组成, 分别为:网络结构 —— 描述神经元的层次与连接神经元的结构.激活函数(激励函数) —— 用于加入非线性的因素, 解决线性模型所不能解决的问题.参数学习方法的选择(一般为权重值W和偏置项b)一、CNN领域划分图像处理领域 图像识别图像标注图像主题生成图像内容生成…视频处理领域 视频分类视频标准视频预测…自然语言处理(NLP)领域 对话
转载 2024-05-04 18:17:35
102阅读
上世纪科学家们发现了几个视觉神经特点,视神经具有局部感受野,一整张图的识别由多个局部识别点构成;不同神经元对不同形状有识别能力,且视神经具有叠加能力,高层复杂的图案可以由低层简单线条组成。之后人们发现经过conclusional的操作,可以很好反映视神经处理计算的过程,典型的是1998年LeCun发明的LeNet-5,可以极大地提升识别效果。本文主要就convolutional layer、poo
转载 2024-08-08 12:09:24
144阅读
前言  在学计算机视觉的这段时间里整理了不少的笔记,想着就把这些笔记再重新整理出来,然后写成Blog和大家一起分享。目前的计划如下(以下网络全部使用Pytorch搭建):专题一:计算机视觉基础介绍CNN网络(计算机视觉的基础)浅谈VGG网络,介绍ResNet网络网络特点是越来越深)介绍GoogLeNet网络网络特点是越来越宽)介绍DenseNet网络(一个看似十分NB但是却实际上用得不多的网络
转载 2024-05-22 08:55:09
76阅读
1.加权图,非加权图说白了,就是在有向图的边上加上数字,这个数字可以代表很多东西,如果边代表路径,那么数字可以代表这个边的长度。同时这个数字有专门的术语,叫做权重。要计算非加权图中的最短路径,可使用广度优先搜索。要计算 加权图中的最短路径,可使用狄克斯特拉算法。2.狄克斯特拉算法狄克斯特拉算法是用来寻找一个加权图的最短路径。对于一个加权图来说,边最少不代表路程最短。狄克斯特拉算法包含四个步骤1 找
卷积神经网络CNN原理详解(一)——基本原理神经网络的预备知识为什么要用神经网络?特征提取的高效性。   大家可能会疑惑,对于同一个分类任务,我们可以用机器学习的算法来做,为什么要用神经网络呢?大家回顾一下,一个分类任务,我们在用机器学习算法来做时,首先要明确feature和label,然后把这个数据"灌"到算法里去训练,最后保存模型,再来预测分类的准确性。但是这就有个问题,即我们需要实
1 绪论      20世纪60年代,Hubel等人通过对猫视觉皮层细胞的研究,提出了感受野这个概念,到80年代,Fukushima在感受野概念的基础之上提出了神经认知机的概念,可以看作是卷积神经网络的第一个实现网络,神经认知机将一个视觉模式分解成许多子模式(特征),然后进入分层递阶式相连的特征平面进行处理,它试图将视觉系统模型化,使其能够在即使物体有位移或轻微变形的
    第九讲的概述如下:这一讲就是介绍几个CNN网络,AlexNet、VGG、GoogleNet、ResNet。1. AlexNet    第一个在ImageNet中获胜的大型卷积神经网络。    基本结构:卷积层,池化层,归一化,卷积,池化,归一化,最后是一些全连接。1.1 结构  &nbsp
转载 2023-12-23 20:27:53
144阅读
@目录引入P2756 飞行员配对方案问题P4014 分配问题P4015 运输问题P2763 试题库问题引入最近刷网络流24题时发现了一个比较通用的模型,拿出来总结一下。Luogu P2756Luogu P4014Luogu P4015Luogu P2763 对于这四道题,都可以构造成二分图模型,使用最大流或者费用流。P2756 飞行员配对方案问题其实这题没啥好说的……就是个二分图匹配,最后输出方案
转载 2024-01-05 14:23:22
40阅读
  以下是CNN网络的简要介绍。1 CNN的发展简述        CNN可以有效降低传统神经网络(全连接)的复杂性,常见的网络结构有LeNet、AlexNet、ZFNet、VGGNet、GoogleNet、ResNet等。1.1 CNN常见的网络结构    &nbs
简介LeNet是一个早期用来识别手写数字图像的卷积神经网络。这个名字来源于LeNet论文的第一作者Yann LeCun。LeNet展示了通过梯度下降训练卷积神经网络可以达到手写数字识别在当时最先进的结果。这个奠基性的工作第一次将卷积神经网络推上舞台,为世人所知。LeNet分为卷积层块和全连接层块两个部分,其网络结构如下图所示。卷积层块卷积层块里的基本单位是卷积层后接最大池化层:卷积层用来识别图像里
转载 2024-03-26 06:45:20
104阅读
文章提出一个全新的叫做“Network In Network”(NIN)的深度网络结构,加强了模型对接受区域(receptive field)内部块的识别能力。经典的卷积层利用线性滤波器跟着一个非线性激活函数来扫描输入,文章建立了一个结构更复杂的微型神经网络来提取接受区域内的数据,并用多层感知机(更有效的函数逼近器)来实例化这个微型神经网络。通过微型网络来强化局部模型的表达能力,可以在分类层上将全
转载 2024-05-15 04:34:32
65阅读
一 基本概念1 全连接,局部连接,权值共享                  全连接:所有输入点都需要与下一个节点相连接          
转载 2024-03-22 15:58:22
44阅读
CNN(Convolutional Neural Network)    卷积神经网络(简称CNN)最早可以追溯到20世纪60年代,Hubel等人通过对猫视觉皮层细胞的研究表明,大脑对外界获取的信息由多层的感受野(Receptive Field)激发完成的。在感受野的基础上,1980年Fukushima提出了一个理论模型Neocognitron是感受野在人工
转载 2023-10-08 07:43:52
140阅读
# 使用 Python 实现加权网络的社区发现 在网络分析中,社区发现是一项重要的任务,它能帮助我们理解图数据中的结构。本文将通过一个示例,教你如何使用 Python 实现加权网络中的社区发现。以下是整个流程的概览,我们将使用一个简单的表格来展示步骤。 | 步骤 | 描述 | |-------------
原创 2024-09-17 06:18:54
28阅读
文章目录一、加权图二、负权边三、狄克斯特拉算法3.1 理论知识3.2 案例说明3.3 Python代码实现 一、加权加权图是指在图的边上赋予了权重(或距离)的图。每条边都带有一个数值,表示该边的权重。这种权重可以表示不同的度量,如距离、时间、成本等。在加权图中,每个边都有一个相关的权重值,用于衡量通过该边的代价或消耗。这些权重可以是整数、浮点数或其他可比较的值。加权图可以是有向图或无向图,具体
       在上篇中,对卷积神经网络的卷积层以及池化层模块进行了简单的介绍,接下来将对卷积神经网络的整个运作流程进行分析,以便对CNN有个总体上的认知和掌握。       如下图,卷积神经网络要完成对图片数字的识别任务。网络的输入是数字为7的RGB图片,大小为32×32×3,其中32×32为图片的像素大小,3表示图片
转载 2023-10-18 21:42:31
210阅读
AlexNet VGGNet Google Inception Net ResNet这4种网络依照出现的先后顺序排列,深度和复杂度也依次递进。它们分别获得了ILSVRC(ImageNet Large Scale Visual Recognition Challenge)比赛分类项目的2012年冠军(top-5错误率16.4%,
转载 2024-06-07 11:33:42
65阅读
平时做自然语言处理的时候,都会有用到CNN的模型,可是对于模型本身的算法具体过程还没有完全理解透彻! 因此阅读了一些文章书籍以及观看了一些课程,在这里尽量以通俗易懂的语言,以问答形式作一个总结,如有错误的地方劳烦指出!一 CNN是个什么鬼?它可以用来做什么? CNN的英文全称是Convolutional Neural Networks(可不是那个美国有线电视新闻网CNN哦), 中文名叫作卷积神
  • 1
  • 2
  • 3
  • 4
  • 5