神经网络(CNN)神经网络主要有三个部分组成, 分别为:网络结构 —— 描述神经元的层次与连接神经元的结构.激活函数(激励函数) —— 用于加入非线性的因素, 解决线性模型所不能解决的问题.参数学习方法的选择(一般为权重值W和偏置项b)一、CNN领域划分图像处理领域
图像识别图像标注图像主题生成图像内容生成…视频处理领域
视频分类视频标准视频预测…自然语言处理(NLP)领域
对话
前言 在学计算机视觉的这段时间里整理了不少的笔记,想着就把这些笔记再重新整理出来,然后写成Blog和大家一起分享。目前的计划如下(以下网络全部使用Pytorch搭建):专题一:计算机视觉基础介绍CNN网络(计算机视觉的基础)浅谈VGG网络,介绍ResNet网络(网络特点是越来越深)介绍GoogLeNet网络(网络特点是越来越宽)介绍DenseNet网络(一个看似十分NB但是却实际上用得不多的网络
上世纪科学家们发现了几个视觉神经特点,视神经具有局部感受野,一整张图的识别由多个局部识别点构成;不同神经元对不同形状有识别能力,且视神经具有叠加能力,高层复杂的图案可以由低层简单线条组成。之后人们发现经过conclusional的操作,可以很好反映视神经处理计算的过程,典型的是1998年LeCun发明的LeNet-5,可以极大地提升识别效果。本文主要就convolutional layer、poo
第九讲的概述如下:这一讲就是介绍几个CNN的网络,AlexNet、VGG、GoogleNet、ResNet。1. AlexNet 第一个在ImageNet中获胜的大型卷积神经网络。 基本结构:卷积层,池化层,归一化,卷积,池化,归一化,最后是一些全连接。1.1 结构  
卷积神经网络 我们来具体说说卷积神经网络是如何运作的吧, 举一个识别图片的例子, 我们知道神经网络是由一连串的神经层组成,每一层神经层里面有存在有很多的神经元. 这些神经元就是神经网络识别事物的关键. 每一种神经网络都会有输入输出值, 当输入值是图片的时候, 实际上输入神经网络的并不是那些色彩缤纷的图案,而是一堆堆的数字. 就比如说这个. 当神经网络需要处理这么多输入信息的时候, 也就是卷积神经网
卷积神经网络CNN原理详解(一)——基本原理神经网络的预备知识为什么要用神经网络?特征提取的高效性。 大家可能会疑惑,对于同一个分类任务,我们可以用机器学习的算法来做,为什么要用神经网络呢?大家回顾一下,一个分类任务,我们在用机器学习算法来做时,首先要明确feature和label,然后把这个数据"灌"到算法里去训练,最后保存模型,再来预测分类的准确性。但是这就有个问题,即我们需要实
1 绪论 20世纪60年代,Hubel等人通过对猫视觉皮层细胞的研究,提出了感受野这个概念,到80年代,Fukushima在感受野概念的基础之上提出了神经认知机的概念,可以看作是卷积神经网络的第一个实现网络,神经认知机将一个视觉模式分解成许多子模式(特征),然后进入分层递阶式相连的特征平面进行处理,它试图将视觉系统模型化,使其能够在即使物体有位移或轻微变形的
CNN(Convolutional Neural Network) 卷积神经网络(简称CNN)最早可以追溯到20世纪60年代,Hubel等人通过对猫视觉皮层细胞的研究表明,大脑对外界获取的信息由多层的感受野(Receptive Field)激发完成的。在感受野的基础上,1980年Fukushima提出了一个理论模型Neocognitron是感受野在人工
转载
2023-10-08 07:43:52
113阅读
一 基本概念1 全连接,局部连接,权值共享 全连接:所有输入点都需要与下一个节点相连接
以下是CNN网络的简要介绍。1 CNN的发展简述 CNN可以有效降低传统神经网络(全连接)的复杂性,常见的网络结构有LeNet、AlexNet、ZFNet、VGGNet、GoogleNet、ResNet等。1.1 CNN常见的网络结构 &nbs
简介LeNet是一个早期用来识别手写数字图像的卷积神经网络。这个名字来源于LeNet论文的第一作者Yann LeCun。LeNet展示了通过梯度下降训练卷积神经网络可以达到手写数字识别在当时最先进的结果。这个奠基性的工作第一次将卷积神经网络推上舞台,为世人所知。LeNet分为卷积层块和全连接层块两个部分,其网络结构如下图所示。卷积层块卷积层块里的基本单位是卷积层后接最大池化层:卷积层用来识别图像里
文章提出一个全新的叫做“Network In Network”(NIN)的深度网络结构,加强了模型对接受区域(receptive field)内部块的识别能力。经典的卷积层利用线性滤波器跟着一个非线性激活函数来扫描输入,文章建立了一个结构更复杂的微型神经网络来提取接受区域内的数据,并用多层感知机(更有效的函数逼近器)来实例化这个微型神经网络。通过微型网络来强化局部模型的表达能力,可以在分类层上将全
在上篇中,对卷积神经网络的卷积层以及池化层模块进行了简单的介绍,接下来将对卷积神经网络的整个运作流程进行分析,以便对CNN有个总体上的认知和掌握。 如下图,卷积神经网络要完成对图片数字的识别任务。网络的输入是数字为7的RGB图片,大小为32×32×3,其中32×32为图片的像素大小,3表示图片
转载
2023-10-18 21:42:31
140阅读
AlexNet VGGNet Google Inception Net ResNet这4种网络依照出现的先后顺序排列,深度和复杂度也依次递进。它们分别获得了ILSVRC(ImageNet Large Scale Visual Recognition Challenge)比赛分类项目的2012年冠军(top-5错误率16.4%,
一、CNN概述 卷积神经网络是一个多层的神经网络,每层由多个二维平面组成(每个层有多个Feature Map,每个Feature Map通过一种卷积滤波器提取输入的一种特征),而每个平面由多个独立神经元组成。图1 卷积神经网络的概念示范1. 输入图像通过和三个可训练的滤波器和可加偏置进行卷积,滤波过程如图1,卷积后在C1层产生三个特征映射图2. 然后特征映射图
平时做自然语言处理的时候,都会有用到CNN的模型,可是对于模型本身的算法具体过程还没有完全理解透彻! 因此阅读了一些文章书籍以及观看了一些课程,在这里尽量以通俗易懂的语言,以问答形式作一个总结,如有错误的地方劳烦指出!一 CNN是个什么鬼?它可以用来做什么? CNN的英文全称是Convolutional Neural Networks(可不是那个美国有线电视新闻网CNN哦), 中文名叫作卷积神
转载
2023-10-08 08:26:25
99阅读
写的还算不错。最近在倒腾Matconvnet工具包,正好看见新版Matlab的神经网络工具了,一并学习了,两者很相似。这里是matlab2017a,昨天去学校网上看,貌似matlab2018也出来了哈哈,真是日新月异。关于Matlab,CUDA,VS编译器,以及GPU配置可以查看我的上一篇博文。1.前言最近需要用到卷积神经网络(CNN),在还没完全掌握cuda+caffe+TensorFlow+p
1.CNN现状1.由于可用训练集的大小,并考虑到网络的大小,卷积神经网络(CNN)有一定的缺陷2.在很多视觉任务上,特别是在医学图像处理,期望的输出应该包含定位,即为每个像素分配类别标签,而不是传统的给每张图片一个类别标签2.U-Net网络结构网络结构说明:1.收缩路径(左边),每一步由两个重复的3*3卷积核组成,且均使用修正线性单元Relu激活函数,和一个用于下采样的步长为2的2*2最大池化操作
CNN中减少网络的参数的三个思想:1) 局部连接(Local Connectivity)2) 权值共享(Shared Weights)3) 池化(Pooling)局部连接 局部连接是相对于全连接来说的。全连接示意图如下: 比如说,输入图像为1000*1000大小,即输入层有1000*1000=10^6维,若隐含层与输入层的数目一样,也有10^6个,则输入层到隐含层的全连接参数个数为10^6 *
本文主要CNN系列论文解读——ResNet简介、模型结构、网络结构的代码实现等。原文发表于语雀文档,排版更好看目录如下:1.简介
1.1网络加深的后果1.2 网络模型的退化1.3 退化问题的解决1.4 资源下载2.Abstract3.网络结构
3.1 示意图3.2 残差块4.论文解读
1.介绍2.相关工作
残差表示shortcut连接3.深度残差学习