看到一个简洁漂亮的推导,从可微性的概念出发引入了梯度和雅可比矩阵,简记如下。 微积分的基本理念是利用仿射函数对函数进行近似,仿射函数的定义如下: 如果存在线性函数和向量使得对于任意都有则称函数为一个仿射函数。(注:不难看出,仿射函数实质上是线性变换加上平移。) 如果给定了函数和点,我们希望找到一个仿射函数,使其在点附近能够近似函数,那么显然有 可得 再利用线性函数的性质可得 接下来,相对于接近于的
本文循序渐进描述梯度下降算法,从导数的几何意义开始聊起,如果熟悉微积分可以跳过,主要内容如下:一. 导数的几何意义二. 偏导数三. 什么是梯度四. 梯度下降算法
\(α\)是什么含义?为什么是\(-\)?梯度下降举例一梯度下降举例二值得关注的一些问题五. 梯度下降应用于线性回归
5.1 批量梯度下降5.2 批量梯度下降算法python实现一. 导数的几何意义导数用来衡量函数对取值的微小变化有多敏感
转载
2024-04-25 07:14:48
61阅读
导数的概念导数的公式如下士所示 对点的导数反映了函数在点 处的瞬时变化速率。在多维函数中,梯度是一个向量组合,反映了多维图形中变化速率最快的方向。凸函数的概念如果f(x)在[a,b]上连续,在(a,b)上有二阶导数 ,f(x)是[a,b]上的凹函数 ,f(x)是[a,b]上的凸函数 如下图所示,凹函数f(x)的一阶导数递增,凸函数f(x)的一阶导数递减。 如果函数是凸的,那么梯度下降法不会陷入局部
转载
2024-07-15 07:40:54
32阅读
很多深度学习的书籍以及网上介绍深度学习的相关文章里面介绍了梯度法求损失函数最优化,但很少会解释梯度法的数学式是怎么得出来的,经过一番数学推理和文献查找(其实Ian Goodfellow等著的《深度学习》也没有通俗解释,用了晦涩的语言和符号表示,没有具体说明,参见其第四章第三节),做此笔记。 梯度通俗来说,梯度就是表示某一函数在该点处的方向导数沿着该方向取得较大值,即函数在当前位置的导数。
转载
2024-04-19 13:50:37
88阅读
原作者: 红色石头 梯度下降算法的公式非常简单,”沿着梯度的反方向(坡度最陡)“是我们日常经验得到的,其本质的原因到底是什么呢?为什么局部下降最快的方向就是梯度的负方向呢?也许很多朋友还不太清楚。没关系,接下来我将以通俗的语言来详细解释梯度下降算法公式的数学推导过程。 下山问题假设我们位于黄山的某个山腰处,山势连绵不绝,不知道怎么下山。于是决定走一步算一步,也就是每次沿着当前位
转载
2024-05-07 22:27:23
85阅读
梯度下降法 :就是我们在对于一个代价函数求出适合的参数值的时候经常使用的方法,首先 J (thete1,…,theten) 我们要使得这个函数最小化,就需要不断去逼近这些 thete 值,我们需要深刻理解导数、偏导数这些东西才能知道其中的原理,比如说导数是一个函数沿着x轴正方向的变化率,在偏导数中 对于一个变量 xi 对它的偏导数就着这个方向增长的最大变化率,所以在使用梯度下降的时候需要向反方向下
转载
2024-04-28 13:37:02
51阅读
梯度下降(Gradient descent)算法详解说起梯度下降算法,其实并不是很难,它的重要作用就是求函数的极值。梯度下降就是求一个函数的最小值,对应的梯度上升就是求函数最大值。为什么这样说呢?兔兔之后会详细讲解的。 虽然梯度下降与梯度上升都是求函数极值的算法,为什么我们常常提到“梯度下降”而不是梯度上升“呢?主要原因是在大多数模型中,我们往往需要求函数的最小值。比如BP神经网络算法,我们得出损
前言1、机器学习中的大部分问题都是优化问题,而绝大部分优化问题都可以使用梯度下降法处理。2、梯度下降法 = 梯度+下降3、想要了解梯度,必须要了解方向导数,想要了解方向导数,就要了解偏导数,想要了解偏导数,就要了解导数,所以学习梯度需要依次学习导数、偏导数、方向导数和梯度。基础知识1、导数:函数在该点的瞬时变化率,针对一元函数而言2、偏导数:函数在坐标轴方向上的变化率 3、方向导数:函数
转载
2024-06-07 21:03:13
1302阅读
目录一、什么是梯度下降法?二、梯度下降法的一般求解步骤三、在Excel里用牛顿法、或者梯度下降法求解的近似根四、线性回归问题求解1、最小二乘法2、梯度下降一、什么是梯度下降法?梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在求解
转载
2024-04-15 12:20:48
221阅读
可以用来求解协方差矩阵的特征值和特征向量。雅可比方法(Jacobian method)求全积分的一种方法,把拉格朗阶查皮特方法推广到求n个自变量一阶非线性方程的全积分的方法称为雅可比方法。雅克比迭代法的计算公式简单,每迭代一次只需计算一次矩阵和向量的乘法,且计算过程中原始矩阵A始终不变,比较容易并行计算。考虑线性方程组Ax=b时,一般当A为低阶稠密矩阵时,用主元消去法解此方程组是有效方法。但是,对
转载
2023-12-30 23:12:22
497阅读
浅述雅可比矩阵(jacobi matrix)与雅克比行列式(Jacobian )0.菜鸟预知识0.1矩阵0.2矩阵乘法0.3矩阵行列式0.4 雅克比矩阵、雅克比行列式0.5切空间0.6 欧式空间和非欧式空间1.理解2.雅克比矩阵的几何意义2.1二维情况下一个直观的栗子3.机器人学中的应用reference: 0.菜鸟预知识0.1矩阵定义: 由 m × n 个数aij排成的m行n列的数表称为m行n
转载
2024-01-01 12:07:25
186阅读
机器学习中往往需要刻画模型与真实值之间的误差,即损失函数,通过最小化损失函数来获得最优模型。这个最优化过程常使用梯度下降法完成。在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。1. 梯度解释梯度之前需要解释导数与偏导数。导数与偏导数的公式如下:导数与偏导数都是自变量趋于0时,函数值的变化量与自变量的变化量的比值,反应了函数f(x)在某一点沿着某一方
转载
2024-04-20 21:19:16
177阅读
接触雅可比行列式是在二重积分的变量变换中,参见我的另一篇文章下面我们来详细说明一下雅可比行列式和雅可比矩阵雅可比矩阵参考维基百科https://zh.wikipedia.org/wiki/%E9%9B%85%E5%8F%AF%E6%AF%94%E7%9F%A9%E9%98%B5总结一下,雅可比矩阵可以理解为:若在n维欧式空间中的一个向量映射成m维欧式空间中的另一个向量的对应法则为F,F由m个实函数
转载
2024-01-21 09:23:37
69阅读
**梯度下降法公式推导**梯度下降法简单的来说就是一种寻找最小值的点的方法,是机器学习和深度学习中常用的优化器,具体又可分为批量梯度下降(BGD)、随机梯度下降(SGD)和小批量梯度下降(MBGD),本文不对这些问题做讨论只是从数学角度来推导神经网络中的数学武器:梯度下降算法,本文是在学习涌井良幸先生的”深度学习的数学”一书后的笔记,仅用作个人学习和复习,由于笔者也是初学,所以难免会有各种错误,望
转载
2024-03-25 20:25:52
53阅读
梯度下降法梯度下降法是求解无约束最优化问题的一种最常用的方法,是一种迭代算法,每一步需要求解目标函数的梯度向量。梯度的定义:某一函数沿着某点处的方向导数可以以最快速度到达极大值,该方向导数我们定义为该函数的梯度。 &n
转载
2024-04-27 20:26:01
77阅读
梯度下降算法的公式非常简单,”沿着梯度的反方向(坡度最陡)“是我们日常经验得到的,其本质的原因到底是什么呢?为什么局部下降最快的方向就是梯度的负方向呢?也许很多朋友还不太清楚。没关系,接下来我将以通俗的语言来详细解释梯度下降算法公式的数学推导过程。 下山问题假设我们位于黄山的某个山腰处,山势连绵不绝,不知道怎么下山。于是决定走一步算一步,也就是每次沿着当前位置最陡峭最易下山的方向前进一小
转载
2024-03-26 11:44:50
60阅读
目录一、梯度向量定义二、Jacobian矩阵定义举例三、Hessian矩阵定义举例四、梯度向量、Jacobian、Hessian的对比 【一句话引入】海森矩阵相当于 f(x1,x2,…,xn) 的梯度向量 g(x) 关于自变量 (x1,x2,…,xn) 的雅可比矩阵。 一、梯度向量定义目标函数f为单变量,是关于自变量x=(x1,x2,…,xn)T的函数,单变量函数f对向量x求梯度,结果为一个与向
转载
2023-10-19 09:35:25
416阅读
Logistic回归cost函数的推导过程。算法求解使用如下的cost函数形式: 梯度下降算法对于一个函数,我们要找它的最小值,有多种算法,这里我们选择比较容易用代码实现和符合机器学习步骤的梯度下降算法。先来看看梯度下降算法中,自变量的迭代过程。表示如下 θ值不断迭代的过程,其中α是学习速率,就是θ的移动“步幅”,后面的偏导数数就是梯度,可以理解为cost函数在θ当前
转载
2024-09-08 18:28:47
55阅读
数值雅克比本质就是对函数的每一维分别做数值微分,再组合为雅克比矩阵即可。通常我们做最优化的时候要计算函数的雅克比矩阵,但是如果函数的解析式比较复杂,求其偏导解析解会非常麻烦。虽然可以利用Mathematica或者Matlab的符号运算进行求解,不过有时候得到的解析解也是很复杂的,再转写成代码如果错一个符号很可能就找不到错误来源了。利用数值方法求偏导,得到雅克比矩阵,在进行优化求解,通常可以简化整个
转载
2023-06-02 13:45:23
422阅读
作者:彭乾坤
雅可比矩阵 在 向量微积分中,雅可比矩阵是一阶 偏导数以一定方式排列成的矩阵,其 行列式称为雅可比行列式。 还有,在代数几何中,代数曲线的雅可比量表示雅可比簇:伴随该曲线的一个群簇,曲线可以嵌入其中。它们全部都以数学家卡尔·雅可比命名;英文雅可比量"Jacobian"可以发音为[ja ?ko bi ?n]或者[
转载
2024-01-30 17:38:56
120阅读