鸢尾花种类预测--流程实现1. 再识K-近邻算法API2. 案例:鸢尾花种类预测2.1 数据集介绍2.2 步骤分析2.3 代码过程 1. 再识K-近邻算法APIsklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm=‘auto’)n_neighbors:
int,可选(默认= 5),k_neighbors查询默认使用
鸢尾花数据分类,通过Python实现KNN分类算法。项目来源:https://aistudio.baidu.com/aistudio/projectdetail/1988428数据集来源:鸢尾花数据集https://aistudio.baidu.com/aistudio/datasetdetail/912061 import numpy as np
2 import pandas as pd
转载
2023-07-05 22:40:30
395阅读
简介使用sklearn自带的鸢尾花数据集,通过kNN算法实现了对鸢尾花的分类。算法思路通过计算每个训练样例到待分类样品的距离,取和待分类样品距离最近的K个训练样例,K个样品中哪个类别的训练样例占多数,则待分类样品就属于哪个类别。核心思想如果一个样本在特征空间中的 k 个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。 该方法在确定分类决策上只依据最邻近的一
转载
2023-12-06 20:20:29
193阅读
目录1、鸢尾花分类问题介绍2、自主实现鸢尾花分类3、调用scikit-learn库实现鸢尾花分类1、鸢尾花分类问题介绍问题描述:一名植物学爱好者对发现的鸢尾花的品种很感兴趣。他收集了每朵鸢尾花的一些测量数据:花瓣的长度和宽度以及花萼的长度和宽度。他还有一些鸢尾花分类的测量数据,这些花之前已经被植物学专家鉴定为属于 setosa、versicolor 或 virginica 三个品种之一。对于这些测
转载
2023-08-12 21:31:47
20阅读
最近在学习数据挖掘,其实决策树分类看过去好久了,但是最近慢慢的想都实现一下,加深一下理解。 知道决策树有很多现成的算法(ID3,C4.5、CART),但是毕竟核心思想就是那几点,所以本篇博客就是我随便实现的,没有参考现有的决策树算法。考虑到实现分类起码需要一个数据集,所以我选择了经典的鸢尾花数据集,下载地址:Iris &
转载
2024-07-31 20:14:41
57阅读
机器学习:KNN算法对鸢尾花进行分类1.KNN算法的理解:1.算法概述KNN(K-NearestNeighbor)算法经常用来解决分类与回归问题, KNN算法的原理可以总结为"近朱者赤近墨者黑",通过数据之间的相似度进行分类。就是通过计算测试数据和已知数据之间的距离来进行分类。如上图,四边形代表测试数据,原型表示已知数据,与测试数据最近的一个已知数据为红色的’whale’,所以对这个测试数据的预测
转载
2024-03-18 21:56:13
129阅读
KNN算法解决鸢尾花分类案例本文分别通过KNN底层算法实现和sklearn中的KNeighbors Classifier(K近邻分类模拟)和对3中不同的鸢尾花的分类。一、K近邻(KNN)算法介绍二、KNN举例说明三、KNN举例计算四、KNN算法实现五、利用KNN算法实现鸢尾花分类案例案例背景说明:数据为sklearn自带的,数据集共有150条,其中数据 data代表着鸢尾花的4个特征(花萼长度,花
转载
2023-11-02 00:58:39
898阅读
属于监督学习算法 包括四个方面,训练,测试,评估,预测 此次记录也适合从这四个方面出发一:训练利用已知的鸢尾花数据构建机器学习模型,用于预测新测量的鸢尾花的品种。 鸢尾花的数据哪里来呢?有一个开源项目叫做sciket-learn,里面有鸢尾花的150个数据集。1.1安装sciket-learnpip install sciket-learn1.2安装必要的工具和库文件pip install nu
转载
2024-04-10 06:19:03
130阅读
分类器就是一个由特征向量到预测类别的函数。在鸢尾花的分类问题中,我们用+1和-1两个值分别代表变色鸢尾和山鸢尾两个类别,并用字母y表示,即y可以取+1和-1两个值。前面我们已经提取了鸢尾花的特征,将它表示为特征向量,并把特征向量画在了特征空间。从下图(一)看,对鸢尾花品种分类的问题就转变成在特征空间中将一些特征点分开的问题。如果我们用直线作为分界线,那么这个问题就变成:坐标平面中有两类点,画一条直
转载
2024-05-30 22:01:42
47阅读
# 人工智能机器学习鸢尾花卉分类
#样本数据集预处理
def make_data_set(file_name): #文件名为字符串
input_set_list = []
input_file = open(file_name) #打开文件并返回input_file
for line_str in input_file:
line_str = line_str.strip() #去掉
转载
2024-04-08 09:01:34
67阅读
一、释义首先对Iris数据集(鸢尾花数据集)进行简单介绍:1.它分为三个类别,即Iris setosa(山鸢尾)、Iris versicolor(变色鸢尾)和Iris virginica(弗吉尼亚鸢尾),每个类别各有50个实例。2.数据集定义了五个属性:sepal length(花萼长)、sepal width(花萼宽)、petal length(花瓣长)、petal width(花瓣宽)、cla
Python机器学习基础教程——鸢尾花分类初识数据训练数据与测试数据观察数据—数据可视化模型的建立与评估——K近邻算法 她还有一些鸢尾花的测量数据,这些花之前已经被植物学专家鉴定为属于 setosa、versicolor 或 virginica 三个品种之一。对于这些测量数据,她可以确定每朵鸢尾花所属的品种。我们假设这位植物学爱好者在野外只会遇到这三种鸢尾花。我们的目标是构建一个机器学习模型,
转载
2023-12-29 16:51:01
170阅读
文章目录【机器学习】KNN算法实现鸢尾花分类1. 概述2. KNN算法的计算过程2.1 算法核心2.2 距离计算2.3 k值选择3. KNN实现鸢尾花分类3.1 鸢尾花数据集介绍3.2 数据可视化3.3 实现KNN算法的编写3.4 sklearn实现KNN算法4. 讨论4.1 KNN算法适用于图像分类吗4.2 KNN算法的优劣 【机器学习】KNN算法实现鸢尾花分类1. 概述 KNN算法(K-Ne
转载
2024-04-24 16:25:34
155阅读
首先介绍一下Iris鸢尾花数据集,内容摘自百度百科:Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。“Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪
转载
2024-08-06 11:02:16
26阅读
此代码是tesnorflow2搭建神经网络的一般流程,希望自己能够背过。 文章目录实验结果实验步骤一、准备数据二、搭建网络三、参数优化四、测试效果五、acc/loss可视化完整代码及注释 实验结果实验步骤一、准备数据1.读入鸢尾花数据集鸢尾花数据集(Iris),共有数据150组,每组包括4个输入特征,1个标签类别。鸢尾花总共分为三类,分别用数字0,1,2表示。下载数据集,可从sklearn包dat
转载
2023-11-12 10:55:35
131阅读
一、KNN算法简介K Nearest Neighbor算法又叫KNN算法。如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。简单来说,就是确定好k值后,在一个样本点周围的k个数据分别属于什么类别,那么该样本点就属于大多数数据所属的类别二、机器学习算法实现流程我们将使用机器学习的一般流程来实现这个案例,机器学习解决实际问题的一般流程如下
转载
2023-12-18 11:36:35
94阅读
一.KNN算法 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。 该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法中,所选择的邻居都是已经正确分类的对象
转载
2024-05-04 17:03:02
77阅读
一.问题描述用Python语言实现机器学习KNN算法,并用鸢尾花数据集测试。 二.算法设计1.算法流程图2.具体实现步骤(1)定义一个My_KNN()函数实现KNN分类算法;(2)函数参数设为鸢尾花的训练集和测试集;(3)定义对应的三个列表用来存放测试数据与整个数据的欧氏距离;(4)定义一个distance列表存放测试数据与所有训练数据的距离;(5)定义三个整形变量分别表示三类鸢尾花与测
转载
2023-12-14 19:20:56
182阅读
原标题:Python数据可视化-Iris鸢尾花数据报告首先介绍一下Iris鸢尾花数据集,内容摘自百度百科:Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。“Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Ve
鸢尾花的分类是python机器学习中比较经典的一个入门式教学课程,属于监督学习算法包括四个方面,训练,测试,评估,预测此次记录也适合从这四个方面出发一:训练利用已知的鸢尾花数据构建机器学习模型,用于预测新测量的鸢尾花的品种。鸢尾花的数据哪里来呢?有一个开源项目叫做sciket-learn,里面有鸢尾花的150个数据集。1.1安装sciket-learnpip install sciket-lear
转载
2023-11-03 10:54:56
177阅读