1.数据集的介绍以鸢尾花数据集为例,共有150组,每组包括花萼长、花萼宽、花瓣长、花瓣宽4个输入特征。同时给出了这一组特征对应的鸢尾花的类别。类别包括狗尾草鸢尾、杂色鸢尾以及弗吉尼亚鸢尾,分别用0,1,2表示。数据集读入:从sklearn包datasets读入数据集,如下:from sklearn.datasets import load_iris
x_data = load_iris().da
做一个logitic分类之鸢尾花数据集的分类Iris 鸢尾花数据集是一个经典数据集,在统计学习和机器学习领域都经常被用作示例。数据集内包含 3 类共 150 条记录,每类各 50 个数据,每条记录都有 4 项特征:花萼长度、花萼宽度、花瓣长度、花瓣宽度,可以通过这4个特征预测鸢尾花卉属于(iris-setosa, iris-versicolour, iris-virginica)中的哪一品种。首先
鸢( yuān )尾花种类预测使用K-Nearest Neighbor(KNN)算法对鸢尾花的种类进行分类,并测量花的特征。鸢尾花种类Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。关于数据集的具体介绍:scikit-learn数据集介绍scikit-learn数据集APIsklearn.datasets加载获取流行
KNN算法介绍KNN(K-Nearest Neighbor)算法是机器学习算法中最基础、最简单的算法之一。它既能用于分类,也能用于回归。KNN通过测量不同特征值之间的距离来进行分类。KNN算法的思想非常简单:对于任意n维输入向量,分别对应于特征空间中的一个点,输出为该特征向量所对应的类别标签或预测值。KNN算法是一种非常特别的机器学习算法,因为它没有一般意义上的学习过程。它的工作原理是利用训练数据
markdown模式: 找到一张鸢尾花的照片,复制图片地址 输入感叹号、中括号、小括号,然后小括号里面地址放进去 就可将图片执行出来 或者 鸢尾花因为自然环境的不同,所以类别可以细分X = iris['data']
y = iris['target']
#150代表150个样本,4代表着4个属性:花萼长、宽;花瓣长、宽
X.shape#将数据划分,一分为二:一部分用于训练,另一部分用于测试
#将
前言鸢(yuān)尾花Iris Data Set(鸢尾属植物数据集)是历史比较悠久的数据集,它首次出现在著名的英国统计学家和生物学家Ronald Fisher 1936年的论文《The use of multiple measurements in taxonomic problems》中,被用来介绍线性判别式分析。在这个数据集中,包括了三类不同的鸢尾属植物:Iris Setosa,Iris Ve
鸢尾花数据集是机器学习领域非常经典的一个分类任务数据集。它的英文名称为Iris Data Set,使用sklearn库可以直接下载并导入该数据集。数据集总共包含150行数据,每一行数据由4个特征值及一个标签组成。标签为三种不同类别的鸢尾花,分别为:Iris Setosa,Iris Versicolour,Iris Virginica。对于多分类任务,有较多机器学习的算法可以支持。本文
鸢尾花分类代码主要由以下几个步骤:Step1:导入数据集Step2:划分数据集为训练集和测试集Step3:模型训练与模型测试Step4:绘制loss和acc曲线评估模型质量代码详细解析如下:#鸢尾花分类代码是非常经典的分类代码,背下来并掌握具有必要性
# 导入所需模块
import tensorflow as tf
from sklearn import datasets
from matplot
文章目录1. 环境配置及数据集准备2. 创建一个 tf.data.Dataset3. 选择模型类型4. 使用keras创建模型5. 训练模型5.1 定义损失和梯度函数5.2 创建优化器5.3 训练循环5.4 建立测试数据集5.5 根据测试数据集评估模型5.6 使用经过训练的模型进行预测 1. 环境配置及数据集准备import os
import matplotlib.pyplot as plt
Iris数据集实战本次主要围绕Iris数据集进行一个简单的数据分析, 另外在数据的可视化部分进行了重点介绍.环境win8, python3.7, jupyter notebook目录1. 项目背景2. 数据概览3. 特征工程4. 构建模型正文1. 项目背景鸢尾属(拉丁学名:Iris L.), 单子叶植物纲, 鸢尾科多年生草本植物, 开的花大而美丽, 观赏价值
下面将结合Scikit-learn官网的逻辑回归模型分析鸢尾花示例,给大家进行详细讲解及拓展。由于该数据集分类标签划分为3类(0类、1类、2类),很好的适用于逻辑回归模型。1. 鸢尾花数据集在Sklearn机器学习包中,集成了各种各样的数据集,包括前面的糖尿病数据集,这里引入的是鸢尾花卉(Iris)数据集,它是很常用的一个数据集。鸢尾花有三个亚属,分别是山鸢尾(Iris-setosa)、
转载
2023-08-07 17:01:14
460阅读
pytorch用多层感知机实现鸢尾花3分类(亲测可用)泪目了,家人们 我终于能交出点东西了 这是上课的要求,不能直接用库,不能用sklearn函数,必须用多层感知机!而且要3分类,太难了。鸢尾花分类是人工智能界的Hello World。各种人工智能的书籍,往往都会从鸢尾花的分类开始。下面我们将使用鸢尾花分类作为例子,来共同学习人工智能的若干基本概念。这里的人工智能,特指机器学习。iris数据集的中
分类器就是一个由特征向量到预测类别的函数。在鸢尾花的分类问题中,我们用+1和-1两个值分别代表变色鸢尾和山鸢尾两个类别,并用字母y表示,即y可以取+1和-1两个值。前面我们已经提取了鸢尾花的特征,将它表示为特征向量,并把特征向量画在了特征空间。从下图(一)看,对鸢尾花品种分类的问题就转变成在特征空间中将一些特征点分开的问题。如果我们用直线作为分界线,那么这个问题就变成:坐标平面中有两类点,画一条直
机器学习:KNN算法对鸢尾花进行分类1.KNN算法的理解:1.算法概述KNN(K-NearestNeighbor)算法经常用来解决分类与回归问题, KNN算法的原理可以总结为"近朱者赤近墨者黑",通过数据之间的相似度进行分类。就是通过计算测试数据和已知数据之间的距离来进行分类。如上图,四边形代表测试数据,原型表示已知数据,与测试数据最近的一个已知数据为红色的’whale’,所以对这个测试数据的预测
文章目录1. 鸢尾花分类(1)2. 鸢尾花分类_2 废话少说速度上号刷题卷起来 1. 鸢尾花分类(1)描述: 请编写代码实现train_and_predict功能,实现能够根据四个特征对三种类型的鸢尾花进行分类。 train_and_predict函数接收三个参数: train_input_features—二维NumPy数组,其中每个元素都是一个数组,它包含:萼片长度、萼片宽度、花瓣长度和花瓣
转载
2023-09-18 20:16:08
174阅读
文章目录数据选取和数据情况利用高斯混合模型聚类模型原理GMM实现k-means生成模型初始参数EM算法迭代训练模型预测模型聚类效果参考资料 数据选取和数据情况本次聚类实验仍然选取鸢尾花数据集(http://archive.ics.uci.edu/ml/datasets/Iris) 数据包含5列,分别是花萼长度、花萼宽度、花瓣长度、花瓣宽度、鸢尾花种类。 鸢尾花属种类包含三种:iris-setos
文章目录例子初始数据衡量模型是否成功:训练数据与测试数据要事第一:观察数据构建第一个模型:k近邻算法做出预测评估模型 例子假设有一名植物学爱好者对她发现的鸢尾花的品种很感兴趣。她收集了每朵鸢尾花的一些测量数据:花瓣的长度和宽度以及花萼的长度和宽度,所有测量结果的单位都是厘米。 她还有一些鸢尾花的测量数据,这些花之前已经被植物学专家鉴定为属于setosa、versicolor或virginica三
x
原创
2022-11-22 13:33:13
380阅读
KNN算法解决鸢尾花分类案例本文分别通过KNN底层算法实现和sklearn中的KNeighbors Classifier(K近邻分类模拟)和对3中不同的鸢尾花的分类。一、K近邻(KNN)算法介绍二、KNN举例说明三、KNN举例计算四、KNN算法实现五、利用KNN算法实现鸢尾花分类案例案例背景说明:数据为sklearn自带的,数据集共有150条,其中数据 data代表着鸢尾花的4个特征(花萼长度,花
转载
2023-11-02 00:58:39
282阅读
TensorFlow实现鸢尾花分类代码一:代码from sklearn import datasets
from matplotlib import pyplot as plt
import tensorflow as tf
import numpy as np
# 获取鸢尾花数据和对应的标签
x_data = datasets.load_iris().data
y_data = datase