一、什么是贝叶斯网络?贝叶斯网络是一种用于进行概率推理的模型。(比如说下面这个图,箭头表示因果关系,也就是强盗抢劫和地震都会引起房子铃响,如果房子铃响,那么这个人的两个邻居John和mary会打电话给他)。这里通过因果关系建立起来的网络称之为贝叶斯网络,那么它支持哪些推理呢? 如果我们根据先验知识构建了这个贝叶斯网络,那么我们是可以对这样一个查询进行概率推理的——如果John打电话给我,发生抢劫的
转载
2023-11-03 14:02:18
471阅读
1. 贝叶斯网络 贝叶斯网络(Bayesian network),又称信念网络(Belief Network),或有向无环图模型。它用网络结构代表领域的基本因果知识。 贝叶斯网络中的节点表示命题(或随机变量),认为有依赖关系(或非条件独立)的命题用箭头来连接。 令G = (I,E)表示一个有向无环图(DAG),其中I代表图形中所有的节点的集合,而E代表有向连接线段的集合,且令X = (Xi),
转载
2023-11-16 19:42:29
504阅读
贝叶斯网络是一种信念网,基于有向无环图来刻画属性之间的依赖关系的一种网络结构,并使用条件概率表(CPT)来描述联合概率分布。 具体来所,一个贝叶斯网络B由结构G和参数 两部分构成,B=(G, θ),网络结构G是一个有向无环图,点对应每一个属性,设父节点为π,所以包含了每个属性的条件概率表为,如图所示: 结构 以结构表达了属性之间的条件独立性,给定父节点集,假设每个属性与它的非后裔属性独立,于是
转载
2023-07-23 19:16:26
368阅读
为什么用贝叶斯网络联合分布的显式表示Note: n个变量的联合分布,每个x对应两个值,共n个x,且所有概率总和为1,则联合分布需要2^n-1个参数。贝叶斯网表示独立性质的应用会降低参数数目,表达更紧凑。[PGM:贝叶斯网表示之朴素贝叶斯模型naive Bayes :独立性质的利用]皮皮blog贝叶斯网络 贝叶斯网络(Bayesian network),
转载
2024-06-14 10:09:14
136阅读
引言此处为了广大同学们理解贝叶斯网络(Bayesian Network,BN),对贝叶斯网络作以简单介绍,并用BN中一个经典的草地湿模型案例加以介绍,方便大家理解,若有不对之处请指出>_<贝叶斯网络介绍贝叶斯网络分别网络结构和网络参数。结构:你看到的有向无环图(节点以及有向边)参数:有向无环图中每个节点的条件概率表 一般BN研究方向也就两种,就是怎么得到BN结构和BN参数,分别称之为B
转载
2024-04-01 10:24:54
101阅读
1 概率图模型、贝叶斯网络与贝叶斯公式概率图模型概率图模型简单的说,就是用图来表示概率模型。它是一种通用化的不确定性知识表示和处理方法。在概率图模型的表达中,结点表示随机变量,结点之间直接相连的边表示随机变量之间的概率关系。贝叶斯网络贝叶斯网络是一种基于概率推理的数学模型,其理论基础是贝叶斯公式。一个贝叶斯网络就是一个有向无环图,结点表示随机变量,可以是可观测量、隐含变量、未知参量或假设等;结点之
目录一、贝叶斯网络基本概念1.1主要组成1.2概率模型1.3应用场景1.4推理方法1.5学习二、贝叶斯网络在机器学习中的应用三、应用实例3.1分类3.2推荐系统3.3自然语言处理一、贝叶斯网络基本概念贝叶斯网络,也称为信念网络或有向无环图模型,是一种表示随机变量之间依赖关系的概率图模型。这种网络由节点和有向边组成,其中节点代表随机变量,边则代表变量之间的概率依赖关系。贝叶斯网络是处理不确定知识的有
转载
2024-06-11 16:49:47
74阅读
前面学习了朴素贝叶斯的原理,并且利用朴素贝叶斯原理对西瓜数据集3.0数据集进行了分类:朴素贝叶斯(Naive Bayes)原理+编程实现拉普拉斯修正的朴素贝叶斯分类器,今天我们更进一步,来探讨一下贝叶斯网络的原理以及应用。 贝叶斯网络1.定义2.概率流动的影响性2.1独立的概念2.2通过网络判定条件独立3.有效迹3.1定义3.2条件独立与有效迹3.3 D-separation3.4判断独立性4
转载
2023-09-09 07:27:01
279阅读
朴素贝叶斯算法(1)超详细的算法介绍朴素贝叶斯算法(2)案例实现github代码地址引言关于朴素贝叶斯算法的推导过程在朴素贝叶斯算法(1)超详细的算法介绍中详细说明了,这一篇文章用几个案例来深入了解下贝叶斯算法在三个模型中(高斯模型、多项式模型、伯努利模型)的运用。案例一:多项式模型特征属性是症状和职业,类别是疾病(包括感冒,过敏、脑震荡) 某个医院早上收了六个门诊病人,如下表:症状职业疾病打喷嚏
转载
2024-01-20 06:12:05
127阅读
朴素贝叶斯(Naive Bayes)= Naive + Bayes 。(特征条件独立 + Bayes定理)的实现。零、贝叶斯定理(Bayes' theorem)所谓的贝叶斯方法源于他生前为解决一个“逆概”问题写的一篇文章,而这篇文章是在他死后才由他的一位朋友发表出来的。在贝叶斯写这篇文章之前,人们已经能够计算“正向概率”,如“假设袋子里面有N个白球,M个黑球,你伸手进去摸一把,摸出黑球
转载
2024-06-14 10:15:38
81阅读
点赞
贝叶斯网络1. 基本概念2. 有向分离3. 贝叶斯网络结构学习4. 贝叶斯网络参数学习 1. 基本概念贝叶斯网络(Bayesian network)又称信念网络(belief network),使用**有向无环图(Directed Acyclic Graph)来表示变量间的依赖关系,并使用条件概率表(CPT,Conditional Probability Table)**描述属性的联合概率分布。
转载
2024-05-29 07:24:41
155阅读
本文为德国凯泽斯劳滕大学(作者:Kumar Shridhar)的硕士论文,共90页。人工神经网络是一种互联系统,它通过学习实例来执行给定的任务,而不必事先知道该任务。这是通过为每个节点中的权重找到一个最优点估计来实现的。一般来说,使用点估计作为权值的网络在处理大数据集时表现良好,但在数据很少或没有数据的区域,它们无法表达不确定性,从而导致过度自信决策。本文提出了一种基于变分推理的贝叶斯卷积神经网
转载
2023-10-12 13:31:53
164阅读
CS188—贝叶斯网络介绍项目解决方案question1:贝叶斯网络结构question2:贝叶斯净概率question3:连接因子总结 介绍项目解决方案question1:贝叶斯网络结构 贝叶斯网络(Bayesian network),又称信念网络(belief network)或是有向无环图模型(directed acyclic graphical model),是一种概率图型模型。一个贝
转载
2023-08-21 17:34:14
337阅读
题目:贝叶斯网络综合应用 截止到现在,已经讨论了贝叶斯网络结构学习、贝叶斯网络参数学习、贝叶斯网络推理,现在应该可以应用贝叶斯网络建模了。实际中,出发点一般是一个数据集,根据数据集首先学得贝叶斯网络结构(有向无环图DAG),进而学得贝叶斯网络参数(条件概率表CPT),完成贝叶斯网络学习;根据学得的贝叶斯网络,可以完成一些推理。&nb
转载
2023-11-02 08:47:30
96阅读
辨析极大似然估计,朴素贝叶斯分类器,半朴素贝叶斯分类器等
贝叶斯理论应用于机器学习方面产生了多种不同的方法和多个定理,会让人有些混淆。主要有最大后验概率,极大似然估计(MLE),朴素贝叶斯分类器,还有一个最小描述长度准则。\(\lambda_{ij}\)是将实为\(c_j\)的样本标记为\(c_i\)的损失,则将样本\(x\)标记为\(c_i\)的期
转载
2024-06-14 10:05:02
43阅读
贝叶斯分类是统计学分类方法。它们可以预测类成员关系的可能性,如给定样本属于一个特定类的概率。 贝叶斯定理是就是在给定的数据概率来表示未知的后验概率。比如已知某水果是红色的情况下,判断该水果有多大的概率是苹果,用数学符号表示就是(后验概率),其中X表示“这个水果是红色的”,H表示“这个水果是苹果...
转载
2013-11-24 16:40:00
751阅读
2评论
没有最好的分类器,只有最合适的分类器数据维度越高,随机森林就比AdaBoost强越多,但是整体不及SVM[2]。数据量越大,神经网络就越强。近邻 (Nearest Neighbor)典型的例子是KNN,它的思路就是——对于待判断的点,找到离它最近的几个数据点,根据它们的类型决定待判断点的类型。它的特点是完全跟着数据走,没有数学模型可言。适用情景:需要一个特别容易解释的模型的时候。 比如需要向用户解
转载
2023-11-06 19:04:49
27阅读
本文为 AI 研习社编译的技术博客,原标题 :Bayesian Neural Network Series Post 2: Background Knowledge作者 | Kumar Shridhar翻译 | 微白o 校对 | 酱番梨 审核 | 约翰逊·李加薪 整理 | 立鱼王https://medium.com/neuralspace/bayesian-neural-network-serie
转载
2023-10-07 11:51:50
206阅读
1、优缺点:优点:在数据较少的情况下仍然有效,可以处理多类别问题。缺点:对于输入数据的准备方式较为敏感。适用数据类型:标称型数据。2、贝叶斯决策论的核心思想:p1(x,y)表示数据点(x,y)属于类1的概率,p2(x,y)表示数据点(x,y)属于类2的概率:如果p1(x,y)>p2(x,y),那么类别为1如果p2(x,y)>p1(x,y),那么类别为2也就是说,我们选择高概率对应的类别
转载
2024-06-28 17:51:35
59阅读
1、概率知识条件概率:事件A在另外一个事件B已经发生条件下的发生概率。表示:P(A|B)记作 “在B条件下A的概率”乘法定理:设P(A)>0,则有 &n
转载
2023-08-30 09:33:08
463阅读