个人认为sherwood算法严格意义上不是一个算法,而是一个随机处理过程,我将原始算法经过sherwood处理后的算法称为sherwood算法。使用Sherwood处理后的算法能够平滑不同输入实例的执行时间。设A是一个确定算法,f(x)是解某个实例x的执行时间,设n是一整数,Xn是大小为n的实例的集合.假定Xn中每一个实例是等可能出现的,则算法A解一个大小为n的实例的平均执行时间是: 这
转载
2024-01-21 07:02:23
50阅读
算法是程序的灵魂,而排序算法 是算法的入门经典,作者在此用python亲自实现了7种主流的排序算法,并做简短的说明.
排序算法
学习难度:桶排序 < 冒泡排序 < 选择排序 < 插入排序 < 快速排序 < 归并排序 < 希尔排序桶排序(简化版)桶排序: 将列表中最大数与最小数之间的数全部做成标签,贴到N个桶上 将每个元素放到对应值
转载
2024-06-07 09:44:58
66阅读
# 110. 平衡二叉树---题目来源:力扣(LeetCode)[https://leetcode-cn.com/problems/balanced-binary-tree](https://leetcode-cn.com/problems/balanced-binary-tree)## 题目---给定一个二叉树,判断它是否是高度平衡的二叉树。本题中,一棵高度平衡二叉树定义为:一个二叉树每个节点
1.使用imhist()函数求图片直方图的时候,如果是RGB彩色图,则要首先调用rgb2gray()函数将其转化为灰度图。eg: 1 ImageData=imread('baby.jpg');
2 I=rgb2gray(ImageData );
3 figure(1);
4 subplot(2,1,1);
5 imshow(ImageData);
6 subplot(2,1,2);
7 i
摘要:本文介绍了一种通过对图像的直方图进行变换操作而使图像得到有效增强的程序算法,并从数学的角度对程序算法的实现原理做了较为详细的描述。关键词:图像处理;灰度直方图;直方图均衡化;直方图规定化;单映射规则;组映射规则;统计概率 前言 图像增强处理技术一直是图像处理领域一类非常重要的基本图像处理技术。通过采取适当的增强处理可以使原本模糊不清甚至根本无法分辨的原始图片处理成清楚、明晰的富含大量有用信
1. 线性变换代码: import cv2
import random
import imutils
import numpy as np
# 彩色图像每个像素值是[x,y,z], 灰度图像每个像素值便是一个np.uint8
image = cv2.imread('E:/1.PNG')
gray_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
转载
2024-09-01 10:03:19
88阅读
我们之前对直方图有一个大概的了解,它可以将图像的不同颜色的像素值在坐标上表示出来,现在我们来讨论直方图的均衡化,在基本概念的基础上来进行实战化。假设有一个图像,其像素值仅局限于某些特定范围的值。举个例子,其比较明亮的图像区域所有的像素仅局限于高值,但实际上一个好的图像,其像素会来源于图像上的所有区域。所以我们需要拉伸/伸展直方图,这也是直方图均衡化所做的。而这样的做法通常也可以优化图像的对比度:这
转载
2024-10-09 19:51:56
246阅读
1.算法定义 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。一个
转载
2023-06-30 11:55:06
187阅读
一、算法简介1、定义算法是一组完成任务的指令;有限步骤内解决数学问题的程序;为解决某项工作或某个问题,所需要有限数量的机械性或重复性指令与计算步骤。2、算法的条件(5)输入性,输出性,明确性,有限性,有效性。3、时间复杂度O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n!)4、常见的大O运行时间(n一般为元素的个数):O(
转载
2023-08-10 15:24:31
100阅读
A*算法python简单可视化实现A*算法详解:A*算法详解python实现:使用堆优化加快查找最小代价点 详细流程都写在注释里了使用方法:# 参数为地图高、宽、方格尺寸、起点坐标(0开始)、终点坐标(0开始)、延迟时间
demo = MiniMap(20, 30, 30, (0, 0), (29, 19), 0.05)鼠标左键单击方格添加/删除障碍物,中键重置路径(不改变障碍物),右键开始寻路。
转载
2023-09-03 11:53:14
420阅读
今天一个Python学习的干货。几个印度小哥,在GitHub上建了一个各种Python算法的新手入门大全,现在标星已经超过2.6万。这个项目主要包括两部分内容:一是各种算法的基本原理讲解,二是各种算法的代码实现。传送门在此:https://github/TheAlgorithms/Python简单介绍下。算法的基本原理讲解部分,包括排序算法、搜索算法、插值算法、跳跃搜索算法、快速选择算
转载
2023-07-04 20:26:32
12阅读
算法的五大特性:1、输入:有0个或多个输入2、输出:有0个或多个输出3、确定性:算法每一步都有一定的含义,不会出现二义性4、有穷性:算法在执行有限的步骤之后会结束,而不是无线循环执行。5、可行性:算法的每一步都是可行的 如果 a+b+c=1000,且 a^2+b^2=c^2(a,b,c 为自然数),如何求出所有a、b、c可能的组合? &nbs
转载
2024-05-17 01:30:40
51阅读
几个印度小哥,在GitHub上建了一个各种Python算法的新手入门大全,现在标星已经超过2.6万。这个项目主要包括两部分内容:一是各种算法的基本原理讲解,二是各种算法的代码实现。传送门在此:简单介绍下。算法的基本原理讲解部分,包括排序算法、搜索算法、插值算法、跳跃搜索算法、快速选择算法、禁忌搜索算法、加密算法等。这部分内容,主要介绍各种不同算法的原理,其中不少介绍还给出了动态示意图,以更初学者能
转载
2024-02-23 09:30:15
44阅读
看这个算法之前,最好先看下匈牙利算法,KM算法 是建立在匈牙利算法基础上实现的对于这个算法最有误区的地方,个人感觉还是在 X 集合 -d 和 Y 集合 + d之后 还要进行操作,再加上 深搜递归操作 ,理解容易产生误区,在这里我给出一组模板的测试数据来帮助初学者理解注意观察: visx[],visy[],lx[],ly[],linky[],在调用中的变化:3 4
经典排序算法图解:经典排序算法的复杂度:使用场景:1.空间复杂度 越低越好、n值较大:堆排序 O(nlog2n) O(1)2.无空间复杂度要求、n值较大:桶排序 O(n+k) O(n+k)大类一(比较排序法):1、冒泡排序(Bubble Sort)【前后比较-交换】 python实现:d0 = [2, 15, 5, 9, 7, 6, 4, 12, 5, 4, 2, 64, 5, 6,
转载
2023-09-01 18:21:43
52阅读
1. 字符串匹配算法所谓字符串匹配算法,简单地说就是在一个目标字符串中查找是否存在另一个子字符串。如在字符串 "ABCDEFG" 中查找是否存在 “EF” 字符串。可以把字符串 "ABCDEFG" 称为原始(目标)字符串,“EF” 称为子字符串或模式字符串。本文试图通过几种字符串匹配算法的算法差异性来探究字符串匹配算法的本质。常见的字符串匹配算法:BF(Brute Force,暴力检索算法)RK
转载
2023-07-04 15:18:16
102阅读
梯度下降法梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。反过来,如果我们需要求解损失函数的最大值,这时就需要用梯度上升法来迭代了算
转载
2023-05-26 11:06:34
199阅读
AES加解密算法 Python实现实现了AES加解密算法。初次尝试,能力有限,代码粗糙,仅供交流学习。五种工作模式也实现了,有需要的可以私聊我。Talk is cheap. Show me the code.def HexToListTranslation(Hex="0123456789abcdeffedcba9876543210"):
List=[]
for p in range
转载
2023-06-01 16:33:26
74阅读
算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。 渐近时间复杂度简称时间复杂
转载
2024-04-26 14:14:54
71阅读
InfoMap算法了解InfoMap算法之前,需要先了解最小熵原理最小熵原理是一个无监督学习的原理,“熵”就是学习成本,而降低学习成本是我们的不懈追求,所以通过“最小化学习成本”就能够无监督地学习出很多符合我们认知的结果,这就是最小熵原理的基本理念。编码的最短平均长度就是信息熵,这其实也是无损压缩的能力极限,我们通过寻找更佳的方案去逼近这个极限,这便是最小熵。假如我们有这么一个任务,要求我们在短时
转载
2024-08-12 13:35:27
134阅读