1、引言Lasso算法是一种经典的线性回归算法,被广泛应用于特征选择和降维问题。相较于传统的线性回归算法,Lasso算法能够在保持预测准确性的同时,自动筛选出对目标变量影响较大的特征变量,从而达到降低模型复杂度、提高泛化性能的效果。其中,Lasso算法作为一种基于L1正则化的稀疏学习方法,能够通过对系数进行惩罚,实现对特征的筛选和压缩,进而达到降维的目的。本篇文章将介绍基于Lasso算法的降维方法
Kaggle 网站(https://www.kaggle.com/)成立于 2010 年,是当下最流行的进行数据发掘和预测模型竞赛的在线平台。 与 Kaggle 合作的公司可以在网站上提出一个问题或者目标,同时提供相关数据,来自世界各地的计算机科学家、统计学家和建模爱好者, 将受领任务,通过比较模型的某些性能参数,角逐出优胜者。 通过大量的比赛,一系列优秀的数据挖掘模型脱颖而出,受到广大建模者的认
转载 2024-02-29 09:37:01
176阅读
基于JMP Pro软件的Lasso及岭回归在水稻全基因组预测中的应用 李亚男,陈建国 全基因组选择是21世纪动植物育种的一种重要的选择策略,其核心就是全基因组预测,即基于分布在整个基因组上的多样性分子标记来对育种值进行预测,为个体的选择提供依据。但目前提出的大多数全基因组预测方法都涉及到相当复杂的算法并要求使用者具备熟练的编程能力,因此很少在实际育种中得到有效的应用。 本文作者
LASSO是由1996年Robert Tibshirani首次提出,全称Least absolute shrinkage and selection operator。该方法是一种压缩估计。它通过构造一个惩罚函数得到一个较为精炼的模型,使得它压缩一些回归系数,即强制系数绝对值之和小于某个固定值;同时设定一些回归系数为零。因此保留了子集收缩的优点,是一种处理具有复共线性数据的有偏估计。设置正则化参数
原创 8月前
175阅读
Lasso 是一种估计稀疏线性模型的方法.由于它倾向具有少量参数值的情况,对于给定解决方案是相关情况下,有效的减少了变量数量。 因此,Lasso及其变种是压缩感知(压缩采样)的基础。在约束条件下,它可以回复一组非零精确的权重系数(参考下文中的 CompressIve sensing(压缩感知:重建医学图像通过lasso L1))。用数学形式表达,Lasso 包含一个使用  先验
转载 2024-05-11 08:56:14
563阅读
背景在前面我们已经基本了解了机器学习项目的选择模型大致流程,我们进一步讨论模型的优化。优化模型基础(1) 训练均方误差与测试均方误差: 原文:在回归中,我们最常用的评价指标为均方误差,即:,其中是样本应用建立的模型预测的结果。如果我们所用的数据是训练集上的数据,那么这个误差为训练均方误差,如果我们使用测试集的数据计算的均方误差,我们称为测试均方误差。一般而言,我们并不关心模型在训练集上的训练均方误
lasso回归模型在Python中的应用 在机器学习领域,涉及到特征选择和模型简化的需求时,lasso回归模型成为了一个非常重要的工具。lasso回归,通过L1正则化来对回归模型的复杂度进行控制,从而提高模型的泛化能力。在处理高维数据集时,lasso回归能够帮助我们自动选取重要特征,减少过拟合的风险。 ### 背景定位 在一次项目中,我们使用lasso回归模型来预测房价。随着数据的增加和特征
原创 6月前
62阅读
文章目录lasso完整代码 lassoThe Lasso 是估计稀疏系数的线性模型。 它在一些情况下是有用的,因为它倾向于使用具有较少参数值的情况,有效地减少给定解决方案所依赖变量的数量。 因此,Lasso 及其变体是压缩感知领域的基础。 在一定条件下,它可以恢复一组非零权重的精确集。 在数学公式表达上,它由一个带有 先验的正则项的线性模型组成。 其最小化的目标函数是: lasso estim
线性回归 import sklearn from sklearn.linear_model import LinearRegression X= [[0, 0], [1, 2], [2, 4]] y = [0, 1, 2] clf = LinearRegression() #fit_intercept=True #默认值为 True,表示计算随机变量, False 表示不计算随机变量 #no
# R语言中的自适应Lasso实现指南 在统计建模和机器学习中,Lasso回归是一种常用的方法,用于变量选择和正则化。自适应LassoAdaptive Lasso)是Lasso的一种扩展,能够通过给变量不同的惩罚权重来提高模型的解释性。本文将指导你使用R语言实现自适应Lasso,并详细解释每个步骤。 ## 实现步骤 以下是实现自适应Lasso的基本流程: | 步骤 | 描述
原创 2024-08-02 06:19:15
507阅读
LassoThe Lasso 是估计稀疏系数的线性模型。 它在一些情况下是有用的,因为它倾向于使用具有较少参数值的情况,有效地减少给定解决方案所依赖变量的数量。 因此,Lasso 及其变体是压缩感知领域的基础。 在一定条件下,它可以恢复一组非零权重的精确集。在数学公式表达上,它由一个带有$ ell_1 $先验的正则项的线性模型组成。 其最小化的目标函数是: lasso 估计解决了加上罚
文章目录Lasso概念• 定义• Lasso处理多重共线性原理二、linear_model.Lasso 类案例:Lasso特征选取① 读取数据较为精炼的模型,使得它压缩一些回归系数..
原创 2022-08-12 10:46:16
1238阅读
由于计算一般线性回归的时候,其计算方法是: p = (X’* X)**(-1) * X’ * y 很多时候 矩阵
原创 精选 2022-11-24 13:46:22
720阅读
此示例显示如何 lasso 识别和舍弃不必要的预测变量。使用各种方法从指数分布生成 200 个五维数据 X 样本。rng(3,'twister') % 实现可重复性 for i = 1:5 X(:,i) = exprnd end生成因变量数据 Y =  X *  r +&n
线性回归存在一个很重要的问题就是过拟合(overfitting)问题,所谓过拟合简单直白的说就是模型的训练误差极小,而检验误差很大。一个好的学习器不仅能够很好的拟合训练数据,而且能够对未知样本有很强的泛化能力,即低泛化误差。先来看看线性回归中的过拟合现象图中左边的图表示的线性回归模型存在欠拟合现象(underfitting),欠拟合顾名思义就是对训练数据的拟合程度不够好,训练误差大。中间的线性回归
转载 2024-04-05 22:31:22
707阅读
嵌入式选择有没有可能将特征选择过程与学习器训练过程融为一体。以前我们设计学习器是希望均方误差达到最小值----min E(x;w)但是如果我们希望把不需要的特征变为0呢?我们可以把但是这是一个NP-hard问题。(NP-HARD问题可以理解为容易算出任何一种情况的结果值,但是要计算所有结果值然后统计出最小最大值会很难。) 所以怎么办呢?两个办法,办法一: L2正则化二范数是把所
转载 2024-07-23 16:22:17
75阅读
该文已经收录到专题机器学习进阶之路当中,欢迎大家关注。1.过拟合当样本特征很多,样本数相对较少时,模型容易陷入过拟合。为了缓解过拟合问题,有两种方法:       方法一:减少特征数量(人工选择重要特征来保留,会丢弃部分信息)。       方法二:正则化(减少特征参数的数量级)。2.正则化(Regularizatio
文章目录逻辑回归的损失函数以MLE角度理解交叉熵以信息论角度理解交叉熵信息熵K-L散度(相对熵)交叉熵(Cross Entropy)推导逻辑回归损失对参数的梯度使用逻辑回归实现乳腺癌数据集二分类 逻辑回归的损失函数有两种方式可以推导出二分类交叉熵损失函数,一个是通过极大似然估计法,另一个则是信息熵。以MLE角度理解交叉熵参考之前如何推导多元线性回归的损失函数,我们可以总结一下这个思想:那就是,一
1. 逻辑回归算法描述(是什么?)1.1 逻辑回归的定义可以答作用:用于分类的回归算法,被广泛用于估算一个实例属于某个特定类别的概率。比如:这封电子邮件属于垃圾邮件的概率是什么?某人患病的概率?明天下雨的概率明天下雨的概率如果预估概率超过50%,则模型预测该实例属于该类别(称为正类,标记为“1”),反之,则预测不是;也就是负类,标记为“0”。这样它就成了一个二分类器。逻辑回归处理的常见的时二分类或
学习机器学习的第一个模型是线性回归。除了作为一个简单的理解算法,结合正确的特征,还可以是一个强大的预测模型。在本文中,我们将在Python中构建一个线性回归模型,并应用梯度下降的优化技术来降低成本函数。以下是我们将要讨论的主题:线性回归模型的解释和概念;梯度下降:关于GD及其变化的解释;代码实现:通过编写Python代码来演示学习的概念;线性回归线性回归是一种基本的预测算法,能够找到两个或多个变
  • 1
  • 2
  • 3
  • 4
  • 5