嵌入式选择有没有可能将特征选择过程与学习器训练过程融为一体。以前我们设计学习器是希望均方误差达到最小值----min E(x;w)但是如果我们希望把不需要的特征变为0呢?我们可以把但是这是一个NP-hard问题。(NP-HARD问题可以理解为容易算出任何一种情况的结果值,但是要计算所有结果值然后统计出最小最大值会很难。) 所以怎么办呢?两个办法,办法一: L2正则化二范数是把所
转载 2024-07-23 16:22:17
75阅读
线性回归存在一个很重要的问题就是过拟合(overfitting)问题,所谓过拟合简单直白的说就是模型的训练误差极小,而检验误差很大。一个好的学习器不仅能够很好的拟合训练数据,而且能够对未知样本有很强的泛化能力,即低泛化误差。先来看看线性回归中的过拟合现象图中左边的图表示的线性回归模型存在欠拟合现象(underfitting),欠拟合顾名思义就是对训练数据的拟合程度不够好,训练误差大。中间的线性回归
转载 2024-04-05 22:31:22
707阅读
回归Lasso回归在拟合回归中回出现过拟合现象,表现为拟合方差的过大,训练系数W的过大,加入正则化L1 L2项训练使得方差减少,偏差增大;Lasso-L1回归特性:某些系数可以为0,变为稀疏特征,但其损失方程不可导,a系数增大收敛比岭回归快;Ridge-L2回归特性:系数变小但不为0,方程可导,收敛没Lasso回归快;kappa系数交叉熵损失函数优缺点 优点:在用梯度下降法做参数更新
转载 2024-04-28 16:05:03
115阅读
线性回归线性回归是基于最小二乘法的距离公式,求解损失函数最小值的θ: 求解损失函数最小值的方法有两种:梯度下降和正规方程。如果是直接解正规方程,会有一定的局限性,主要表现为有的线性方程无逆矩阵,所以没法直接求解。同时线性回归的另一个问题在于过拟合现象。所谓的过拟合是指在训练集上表现很好,但是测试集上表现很差。为了解决上述问题,一般的线性回归都会采用加入正则项后的回归方程:
Lasso的特性及简介:  在最小二乘中,常把岭回归Lasso来进行比较,它们都能对数据防止过拟合,这是为什么呢?  当特征之间存在高度相关关系的时候,假设有两个特征高度负相关,那么不带正则化的回归问题可能会赋予二者近似相等的很大权重,这样加权起来的结果仍然较小,但是由于权重很大,就导致了过拟合问题。Ridge Regression会倾向于在相关特征之间均匀分布权重,Lasso则倾向于
算法的简要概述在机器学习问题中,高维度数据进行回归和分类是一个很困难的问题。例如在许多Microarray生物数据上,数据的维度通常是千和万级别,但是由于收集数据需要昂贵的实验,因此可用的训练数据却相当少,通常只有50-300左右,这样的现象通常称为“small samples, large problem”。 高维度问题带来两个缺点: 1)计算量。从大小矩阵乘积计算和多矩阵计算角度来说,矩阵的
转载 2024-03-22 15:49:54
37阅读
本文将会介绍五种常见的回归模型的概念及其优缺点,包括线性回归(Linear Regression), 多项式回归(Ploynomial Regression), 岭回归(Ridge Regression),Lasso回归和弹性回归网络(ElasticNet Regression).1.线性回归(Linear Regression)回归是在建模过程中用于分析变量之间的关系、以及变量是如何影响结果的一
转载 2024-04-29 17:41:49
71阅读
 以下技术大多数已经发展了较长时间(在过去10年中),其中大部分缺点已经得到弥补,因此更新后的技术已经远不同于其原始版本,性能也大为提高。但通常情况下,这些有弊端的技术仍然被广泛使用。 1.线性回归  依靠一般标准、异方差性和其他假设,不能捕获高度非线性的混沌模式。它倾向于过度拟合、参数难以解读,并且在独立变量高度相关时非常不稳定。修正方法包括减少变量、进行变量变换,以及使用约束回归(例如
LASSO 问题的连续化策略LASSO 问题的连续化策略考虑 LASSO 问题与 BP 问题罚函数的关系初始化和迭代准备连续化循环辅助函数 LASSO 问题的连续化策略考虑 LASSO 问题连续化策略从较大的正则化参数 逐渐减小到 (即 ),并求解相应的 LASSO 问题:这样做的好处是:在求解 对应的优化问题时,可以利用 对应优化问题的解( 子问题使用随机初始点)作为一个很好的逼近解以
Kaggle 网站(https://www.kaggle.com/)成立于 2010 年,是当下最流行的进行数据发掘和预测模型竞赛的在线平台。 与 Kaggle 合作的公司可以在网站上提出一个问题或者目标,同时提供相关数据,来自世界各地的计算机科学家、统计学家和建模爱好者, 将受领任务,通过比较模型的某些性能参数,角逐出优胜者。 通过大量的比赛,一系列优秀的数据挖掘模型脱颖而出,受到广大建模者的认
转载 2024-02-29 09:37:01
176阅读
该文已经收录到专题机器学习进阶之路当中,欢迎大家关注。1.过拟合当样本特征很多,样本数相对较少时,模型容易陷入过拟合。为了缓解过拟合问题,有两种方法:       方法一:减少特征数量(人工选择重要特征来保留,会丢弃部分信息)。       方法二:正则化(减少特征参数的数量级)。2.正则化(Regularizatio
线性回归虽然是机器学习中,可以说是最简单的一个模型了,理他最基本的形式通常来说确实比较容易,但是其实如果扩展开来,其实还有很多了解的。线性回归,局部加权线性回归lasso回归,岭回归,SMO算法,logistics回归(逻辑回归),softmax回归等等。更进一步,KL散度,协方差矩阵,相关系数,置信度,对比散度等等。线性回归对于最简单的线性回归,我认为就是一个单层的,没有激活函数的全连接神经网
转载 2024-03-19 06:58:56
163阅读
书接上文。 不愿露名的笨马:【机器学习-回归】梯度下降(SGD/BGD/MBGD)zhuanlan.zhihu.com 这一节我们主要考虑矩阵形式。考虑BGD的情形。BGD情形下,全体样本损失函数: 进一步,有: 为求其最小值,应有偏导数为0: 化简,即有: 注:不会矩阵求导的萌新可以点开这个链接: 到这里我们发现,模型的
阅读本文需要的背景知识点:线性回归算法、一丢丢编程知识最近笔者做了一个基于人工智能实现音乐转谱和人声分离功能的在线应用——反谱(Serocs),感兴趣的读者欢迎试用与分享,感谢您的支持!serocs.cn一、引言  上一节我们学习了解决多重共线性的一种方法是对代价函数正则化,其中一种正则化的算法叫岭回归算法(Ridge Regression Algorithm)。下面我们来学习另一种正则化的算法
scikit-learn机器学习(一)–多元线性回归模型 scikit-learn机器学习(二)–岭回归Lasso回归和ElasticNet回归 scikit-learn机器学习(三)–逻辑回归和线性判别分析LDA多元线性回归模型中,为了是均方差误差最小化,常见的做法是引入正则化,正则化就是给对模型的参数或者说是系数添加一些先验假设,控制模型的空间,使模型的复杂度较小。 正则化目的:防止过拟合
回归Lasso回归模型01 线性回归模型的短板背景知识根据线性回归模型的参数估计公式可知,得到β的前提是矩阵可逆,但在实际应用中,可能会出现自变量个数多于样本量或者自变量间存在多重共线性的情况,即的行列式为0。此时将无法根据公式计算回归系数的估计值β。02 岭回归Lasso回归的系数求解岭回归模型为解决多元线性回归模型中可能存在的不可逆问题,统计学家提出了岭回归模型。该模型解决问题的思路就是
一、基础理解LASSO 回归(Least Absolute Shrinkage and Selection Operator Regression)是模型正则化的一定方式;功能:与岭回归一样,解决过拟合或者模型含有的巨大的方差误差的问题;  二、LASSO 回归 以线性回归为例 1)对于岭回归任务:让最小化的损失函数对应的 θ 值尽量的小;操作:在损失函数中
语法: Lasso(alpha=1.0, fit_intercept=True, normalize=False, precompute=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, positive=False, random_state=None, selection=’cyclic’)类型: 在sklearn.l
scikit-learn 通过交叉验证来公开设置 Lasso中αα 参数的对象: LassoCV 和 LassoLarsCV。 LassoLarsCV 是基于下面解释的 最小角回归 算法。对于具有许多线性回归的高维数据集, LassoCV 最常见。 然而,LassoLarsCV 在寻找 αα 参数值上更具有优势,而且如果样本数量与特征数量相比非常小时,通常 LassoLarsCV 比 LassoC
转载 2024-03-29 06:36:00
171阅读
引言LASSO是由1996年Robert Tibshirani首次提出,全称Least absolute shrinkage and selection operator。该方法是一种压缩估计。它通过构造一个惩罚函数得到一个较为精炼的模型,使得它压缩一些回归系数,即强制系数绝对值之和小于某个固定值;同时设定一些回归系数为零。因此保留了子集收缩的优点,是一种处理具有复共线性数据的有偏估计。1 本文立
转载 2024-04-25 18:23:10
0阅读
  • 1
  • 2
  • 3
  • 4
  • 5