c/c++开发环境下YOLO4的配置方法和试运行本次试验配置环境如下:opencv 4.0  (踩坑警告: 推荐优先将其配置为系统变量)yolo4   下载官网:  git clone https://github.com/pjreddie/darknet.gitCMAKE  cmake-3.12.2-win64-x64cuda cudnn&nbs
多光源_Multiple lights我们在前面的教程中已经学习了许多关于Vulkan中光照的知识,其中包括冯氏着色(Phong Shading)、材质(Material)、光照贴图(Lighting Map)以及不同种类的投光物(Light Caster)。在这一节中,我们将结合之前学过的所有知识,创建一个包含六个光源的场景。我们将模拟一个类似太阳的定向光(Directional Light)光
在使用Ollama的时候,遇到多GPU的问题是我们在进行机器学习或深度学习时常见的挑战。本文将分享我在处理这个问题时的过程,包括环境配置、编译过程、参数调优、定制开发、错误集锦,以及部署方案等。 ## 环境配置 首先,我们需要设置一个多GPU的环境。在这一步骤中,使用Docker可以简化依赖项的管理。以下是我设置的步骤流程图: ```mermaid flowchart TD A[安装
原创 1月前
336阅读
Yolo算法笔记 目标检测方法yolo(You only look once),看一眼就可识别目标。与R-CNN比,有以下特点(Faster-RCNN 中RPN网络吸取了该特点):速度很快看到全局信息,而非R-CNN产生一个个切割的目标,由此对背景的识别效率很高可从产生的有代表性的特征中学习。流程:以PASCAL VOC数据集为例。1.  输入448X448大小的图片
转载 2024-07-04 16:05:26
107阅读
作者:武卓博士  英特尔AI布道师AI已成为助力千行百业智能化升级的关键技术,然而在行业实践中,如何在应用现场高效提升AI模型的精度和速度,已成为AI模型商业化落地的一大挑战。基于英特尔®视频AI计算盒打造一个从模型训练到优化部署的AI训推一体流水线(Train & Inference pipeline)便成为一个有效的解决方案。在本文中,我们将展示搭建一个AI训推一体流水线的关
认识FFMPEG FFMPEG堪称自由软件中最完备的一套多媒体支持库,它几乎实现了所有当下常见的数据封装格式、多媒体传输协议以及音视频编解码器,堪称多媒体业界的瑞士军刀。因此,对于从事多媒体技术开发的工程师来说,深入研究FFMPEG成为一门必不可少的工作,可以这样说,FFMPEG之于多媒体开发工程师的重要性正如kernel之于嵌入式系统工程师一般。几个小知识:FFMPEG项目是由法国人Fabric
转载 2024-10-16 07:25:04
108阅读
(转)ubuntu18.04下darknet的yolov3测试以及评价指标yolov3测试及评价训练可视化(Avg_loss Avg IOU)方法一方法二第一步、格式化log第二步、绘制loss第三步、绘制Avg IOU批量测试第一种、生成测试集的txt文件命令如下执行命令第二种、一、生成测试集的测试图片1)替换detector.c2)修改detector.c3)make4)开始批量测试AP,m
摘要:该文提出一种“网路扩展(Network Scaling)”方法,它不仅针对深度、宽度、分辨率进行调整,同时调整网络结果,作者将这种方法称之为Scaled-YOLOv4。由此得到的YOLOv4-Large取得了SOTA结果:在MS-COCO数据集上取得了55.4%AP(73.3% AP50),推理速度为15fps@Tesla V100;在添加TTA后,该模型达到了55.8%AP(73.2%AP
文章目录1. 依赖类库2. 相关下载(可跳过本步,依据后面步骤按需下载)3. 源码调试3.1 下载源码3.2 下载预训练模型3.3 下载数据集4. 运行代码4.1 用VSCode打卡项目文件夹4.2 运行测试代码5. 问题5.1 若提示页面文件太小,无法完成操作,则需要调高虚拟内存大小。5.2 若提示错误:BrokenPipeError,将utils/datasets.py的87行的num_wo
1. 根目录下建立makeTxt,并运行import os import random trainval_percent = 0.9 train_percent = 0.9 xmlfilepath = 'data/Annotations' txtsavepath = 'data/ImageSets' total_xml = os.listdir(xmlfilepath) num = len(t
2022年7月,YOLOv7来临, 论文链接:://arxiv.org/abs/2207.02696 代码链接:://github./WongKinYiu/yolov7 在v7论文挂出不到半天的时间,YOLOv3和YOLOv4的官网上均挂上了YOLOv7的链接和说
Intel CPU在运行视觉导航等算法时实时性要优于Nvidia等平台,如Jetson Tx2,NX。而Nvidia平台在运行深度学习算法方面具有很大优势,两种平台各有利弊。但是,Intel OpenVINO的推出允许NUC平台实时运行深度学习模型,如目前最流行的目标检测程序Yolov5,这样就太好了,仅使用Intel无人机平台就可以完成各种任务。本教程将教你用Prometheus在Intel无人
YOLO核心思想:从R-CNN到Fast R-CNN一直采用的思路是proposal+分类 (proposal 提供位置信息, 分类提供类别信息)精度已经很高,但是速度还不行。 YOLO提供了另一种更为直接的思路: 直接在输出层回归bounding box的位置和bounding box所属的类别(整张图作为网络的输入,把 Object Detection 的问题转化成一个 Regression
升级win10,结果电脑磁盘占用率,嗖嗖嗖的往上涨……但是,电脑操作却开启了“慢动作”模式,你的每一步操作,它都不想让你牢牢看清楚…… 而出现这种高CPU的情况,主要原因可以分为以下2点:第一:电脑的配置相对较低!Win10系统,对于电脑配置是有要求的,微软官方公布要求如下:所以,如果你的电脑配置不太适合,那么升级win10就无法完全适配,就会出现Windows运行卡顿,严重影响电脑正常
YOLO V1 (45fps,fast version150fps)paper: http://arxiv.org/abs/1506.02640 pytorch代码:https://github.com/xiongzihua/pytorch-YOLO-v1 1. idea此前的目标检测将问题看成是分类问题,而yolo看成是一个回归问题yolo非常快,可以达到一秒45帧的速度yolo在运行时将整张照
转载 2024-04-02 07:13:30
146阅读
实时目标检测一直是yolo系列的追求之一,从yolo v1开始,作者就在论文中强调real-time。在后期的v2和v3的发展过程中,慢慢在P&R(尤其是recall rate)上下不少功夫。同时,计算量的增大也牺牲了yolo的实时性。tiny-yolo是轻量级的yolo,在不那么要求mAP的场景下,tiny-yolo可以作为v2甚至v3的代替结构。事实上,对于无GPU的设备来讲,tiny
现在说明一下 本文绝对没在本站里看贴 只是为了给自己收藏 没有吹 b的意思 给自己看而已 也不需要这个站对自己有什么好处目前人体姿态估计总体分为Top-down和Bottom-up两种,与目标检测不同,无论是基于热力图或是基于检测器处理的关键点检测算法,都较为依赖计算资源,推理耗时略长,今年出现了以YOLO为基线的关键点检测器。玩过目标检测的童鞋都知道YOLO以及各种变种目前算是工业落地较多的一类
提示:GPU-manager 安装为主部分内容做了升级开箱即用 文章目录前言一、约束条件二、使用步骤1.下载镜像1.1 查看当前虚拟机的驱动类型:2.部署gpu-manager3.部署gpu-admission4.修改kube-4.1 新建/etc/kubernetes/scheduler-policy-config.json4.2 新建/etc/kubernetes/scheduler-exte
随着深度学习模型的快速发展,使用多张 GPU 卡加速训练已经成为一项常见需求。特别是在使用 Ollama 模型时,充分利用 GPU 资源可以显著提高训练效率。然而,许多用户在这一过程中遭遇了各种挑战。本文将详尽记录如何解决“ollama使用多张gpu卡”的问题,带你一步步走过这个过程。 ## 背景定位 在过去的几个月中,随着 Ollama 模型需求的增加,很多用户都希望能够在多张 GPU 上运行
原创 14天前
272阅读
本部分主要来看一下在使用延迟渲染基础上采用多重采样技术来解决抗锯齿问题,至于延迟渲染便不再赘述,有兴趣可参照之前实现了解vulkan_延迟渲染。一、实现原理:了解延迟渲染原理的话,你肯定会知道延迟渲染的缺陷之一便是:不能使用硬件AA(MSAA),所以使用了延迟渲染之后,UE4等引擎只支持FXAA跟TXAA。本部分我们主要是讲述在vulkan延迟渲染中实现MSAA:CPU端查看硬件支持的多从采样量级
  • 1
  • 2
  • 3
  • 4
  • 5