Spark 和 Flink 都是通用的开源大规模处理引擎,目标是在一个系统中支持所有的数据处理以带来效能的提升。两者都有相对比较成熟的生态系统。是下一代大数据引擎最有力的竞争者。 Spark 的生态总体更完善一些,在机器学习的集成和易用性上暂时领先。 Flink 在流计算上有明显优势,核心架构和模型也更透彻和灵活一些。 Flink 和 Spark 对比 通过前面的学习,我们了解到,Spark和Fl
转载
2023-08-16 05:02:53
55阅读
# Spark和Flink面试指南
## 简介
在本篇文章中,我将向你介绍如何准备和实施一次关于Spark和Flink的面试。作为一名经验丰富的开发者,我将向你展示整个流程,并为每个步骤提供代码示例和解释。希望这篇文章能够帮助你成功地准备和完成面试。
## 流程概览
下面是整个流程的概述,其中包含了准备、实施和总结的步骤。我们将使用表格展示这些步骤。
| 步骤 | 描述 |
| ---- |
原创
2023-09-02 14:29:52
43阅读
# Flink and Spark: A Comparative Study
## Introduction
In the world of big data processing, Apache Flink and Apache Spark are two popular open-source frameworks. Both frameworks offer distributed co
原创
2023-08-23 09:02:21
14阅读
Spark Core面试篇01一、简答题1.Spark master使用zookeeper进行HA的,有哪些元数据保存在Zookeeper?答:spark通过这个参数spark.deploy.zookeeper.dir指定master元数据在zookeeper中保存的位置,包括Worker,Driver和Application以及Executors。standby节点要从zk中获得元数据信息,恢复
转载
2023-07-18 22:55:45
0阅读
根据个人面试经历总结: 1、简单说一下hadoop和spark的shuffle相同和差异?联系: Apache Spark 的 Shuffle 过程与 Apache Hadoop 的 Shuffle 过程有着诸多类似,一些概念可直接套用,例如,Shuffle 过程中,提供数据的一端,被称作 Map 端,Map 端每个生成数据的任务称为 Mapper,对应的,接收数据的一端,被称
转载
2023-07-11 17:47:45
74阅读
流处理的几个流派在流式计算领域,同一套系统需要同时兼具容错和高性能其实非常难,同时它也是衡量和选择一个系统的标准。4.2Flink VS Spark 之 APISpark与Flink API pk如下所示: Spark与Flink 对开发语言的支持如下所示:Flink VS Spark 之 ConnectorsSpark 支持的Connectors如下所示: Flink支持的C
转载
2023-07-26 10:56:43
102阅读
1.Spark是微批处理,Flink基于一个个事件流式处理 2.Spark是没有状态的, Flink基于状态编程,3.Spark是通过微批数据模拟流数据处理,秒级数据延迟;Flink 可以用流数据模拟批数据更好扩展4.时间机制:Spark Streaming 支持的时间机制有限,只支持处理时间。使用processing time模拟event time必然会有误差, 如果产生数据堆积的话
原创
2022-09-19 00:31:54
435阅读
Flink 和 Spark 都是基于内存计算、支持实时/批处理等多种计算模式的统一框架1,技术理念不同Spark的技术理念是使用微批来模拟流的计算,基于Micro-batch,数据流以时间为单位被切分为一个个批次,通过分布式数据集RDD进行批量处理,是一种伪实时。 而Flink是基于事件驱动的,它是一个面向流的处理框架, Flink基于每个事件一行一行地流式处理,是真正的流式计算. 另外他也可以基
转载
2023-06-19 06:57:50
271阅读
1、HadoopHadoop是一个由Apache基金会所开发的分布式系统基础架构。 Hadoop 以一种可靠、高效、可伸缩的方式进行数据处理。Hadoop实现了一个分布式文件系统( Distributed File System),其中一个组件是HDFS(Hadoop Distributed File System)。2、FlaskFlask是一个用Python编写的Web应用程序框架。
转载
2023-08-29 16:57:31
204阅读
流式计算模型比较分析一、Spark Streaming1.1 Spark概述1.2 Spark Streaming 概述二、Flink2.1 Flink 概述2.2 Flink的基本架构三、Flink和Spark Streaming流式计算对比分析3.1 时间机制3.2 容错机制和一致性语义四、分析总结 一、Spark Streaming1.1 Spark概述Spark是UC Berkeley
转载
2023-07-18 13:19:35
46阅读
1. Spark 的运行流程? 具体运行流程如下:SparkContext 向资源管理器注册并向资源管理器申请运行 Executor资源管理器分配 Executor,然后资源管理器启动 ExecutorExecutor 发送心跳至资源管理器SparkContext 构建 DAG 有向无环图将 DAG 分解成 Stage(TaskSet)把 Stage
Flink VS Spark Streaming 文章目录Flink VS Spark Streaming数据处理模式运行时结构编程模型Flink编程模型Spark Streaming编程模型APIStreaming处理特性对Time的支持对Window的支持生态集成总结 数据处理模式Apache Flink是一个用于分布式流和批处理数据处理的开源平台。Flink的核心是流数据引擎,为数据流上的分
转载
2023-08-30 16:48:18
52阅读
目录Spark vs Flink 概述编程模型流处理方面对比流处理机制状态管理时间语义Exactly-Once语义总结往期推荐 Spark vs Flink 概述Apache Spark 是一个统一的、快速的分布式计算引擎,能够同时支持批处理与流计算,充分利用内存做并行计算,官方给出Spark内存计算的速度比MapReduce快100倍。因此可以说作为当下最流行的计算框架,Spark已经足够优秀
转载
2023-07-18 13:11:44
101阅读
一、Spark Stream、Kafka Stream、Storm等存在的问题在设计一个低延迟、exactly once、流和批统一的,能够支撑足够大体量的复杂计算的引擎时,Spark Stream等的劣势就显现出来。Spark Streaming的本质还是一个基于microbatch计算的引擎。这种引擎一个天生的缺点就是每个microbatch的调度开销比较大,当我们要求的延迟越低,额外的开
Spark是一种快速、通用的计算集群系统,Spark提出的最主要抽象概念是弹性分布式数据集(RDD),它是一个元素集合,划分到集群的各个节点上,可以被并行操作。用户也可以让Spark保留一个RDD在内存中,使其能在并行操作中被有效的重复使用。Flink是可扩展的批处理和流式数据处理的数据处理平台,设计思想主要来源于Hadoop、MPP数据库、流式计算系统等,支持增量迭代计算。原理 Spark 1
转载
2023-08-30 22:48:21
88阅读
Flink vs Spark Apache Spark和Flink都是下一代大数据工具抢占业界关注的焦点。两者都提供与Hadoop和NoSQL数据库的本机连接,并且可以处理HDFS数据。两者都是几个大数据的好方法问题。但由于其底层架构,Flink比Spark更快。Apache Spark是Apache存储库中最活跃的组件。Spark拥有非常强大的社区支持,并且
转载
2023-06-21 11:54:22
217阅读
我们都知道,Spark和Flink都支持批处理和流处理,接下来让我们对这两种流行的数据处理框架在各方面进行对比。首先,这两个数据处理框架有很多相同点: • 都基于内存计算: • 都有统一的批处理和流处理API,都支持类似SQL的编程接口; • 都支持很多相同的转换操作,编程都是用类似于Scala Collection API的函数式
转载
2023-09-19 05:15:18
118阅读
Spark 是最活跃的 Apache 项目之一。从 2014 年左右开始得到广泛关注。Spark 的开源社区一度达到上千的活跃贡献者。最主要推动者是 Databricks,由最初的 Spark 创造者们成立的公司。今年 6 月的 Spark+AI 峰会参加人数超过 4000。 Spark 因为在引擎方面比 MapReduce 全面占优,经过几年发展和 Hadoop 生态结合较好,已经被广泛视为 H
转载
2023-07-14 17:08:14
74阅读
(1)设计理念 1、Spark的技术理念是使用微批来模拟流的计算,基于Micro-batch,数据流以时间为单位被切分为一个个批次,通过分布式数据集RDD进行批量处理,是一种伪实时。 2、Flink是基于事件驱动的,是面向流的处理框架, Flink基于每个事件一行一行地流式处理,是真正的流式计算. 另外他也可以基于流来模拟批进行计算实现批处理。(2)架构方面 1、Spark在运行时的主要角色
转载
2023-07-21 12:17:46
59阅读
sparkstreaming和flink的区别–组件:sparkstreaming:Master:主要负责整体集群资源的管理和应用程序调度;Worker:负责单个节点的资源管理,driver 和 executor 的启动等;Driver:用户入口程序执行的地方,即 SparkContext 执行的地方,主要是 DGA 生成、stage 划分、task 生成及调度;Executor:负责执行 tas
转载
2023-08-11 23:56:23
112阅读