综合评价与决策方法01——理想解法顶!!! 数学建模综合评价与决策方法01——理想解法前言一、理想解法1. 方法和原理2. TOPSIS法的算法步骤3. 示例 肝!!!前言 评价方法大体上可分为两类,其主要区别在确定权重的方法上。一类是主观赋权法,多数采取综合咨询评分确定权重,如综合指数法、模糊综合评判法、层次分析法、功效系数法等。另一类是客观赋权,根据各指标间相关关系或各指标值变异程度来确定权
Topsis优劣解距离法用于求解 [样本 - 指标] 类型的数据,其行标签为样本序号,列标签为指标名称,将其 shape 记为 [sample, feature]原始的 Topsis 是默认所有指标的权重相等,如果有四个指标,则权重向量是 [0.25 0.25 0.25 0.25]本文将会讲解 熵权法、指标正向化、样本评分 的代码 (基于 numpy)熵权法熵权法的输入是 shape 为 [sam
转载
2023-08-31 13:39:52
394阅读
主要解决多指标评价模型首先来看topsis,考虑一种类型数据首先正向化,比如都改成越大越好(如果越小越好?max - x;在某个区间内最好?中间型指标?)然后标准化,把原式数据改成0~1且和为1的数据当只有一种数据时:有了这个公式,就可以拓展到高维了但是这样有个问题,每种数据的占比可能不同,如何赋权?需要用到熵权法优化。熵权法是一种依靠数据本身来赋权的方法,通过引入“熵”的概念来进行步骤:(Yij
转载
2024-08-18 13:18:33
440阅读
最近在学习数学建模,在B站发现一个特别不错的课程,讲的很全面,常考的算法都有涉及到:清风数学建模本文将结合熵权法介绍TOPSIS法,并将淡化原理的推导,更侧重于具体应用。TOPSIS法概述TOPSIS法(优劣解距离法)是一种常用的综合评价方法,能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的差距。同时TOPSIS法也可以结合熵权法使用确定各指标所占的权重。基本过程一、统一指标类型常见的
转载
2024-01-31 11:43:39
390阅读
TOPSIS算法英文全称Technique for Order Preference by Similarity to Ideal Solution,翻译为逼近理想解排序法。使用层次分析法进行评价时,n不能很大,最多就15个,再多就没有随机一致性指标RI的值了。当评价的对象比较多的时候,我们可以利用数据信息进行评价。基本过程为先将原始数据矩阵统一指标类型(一般正向化处理)得到正向化的矩阵,再对正向
转载
2024-03-18 16:49:44
529阅读
1. 什么是TOPSIS法❑ TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)方法是一种多属性决策方法,通过比较备选解与理想解之间的距离来确定最佳的排序顺序。正理想解是在每个属性上都达到最佳值的解,而负理想解则是在每个属性上都达到最差值的解。❑ 为了确定备选解与理想解的距离,首先计算每个备选解与理想解之间的
一、基本原理在信息论中,熵是对不确定性的一种度量。信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性越大,熵也越大。 根据熵的特性,可以通过计算熵值来判断一个事件的随机性及无序程度,也可以用熵值来判断某个指标的离散程度,指标的离散程度越大,该指标对综合评价的影响(权重)越大,其熵值越小。在信息论中,熵是对不确定性信息的一种度量。信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性
转载
2024-05-15 05:56:42
1007阅读
层次分析法(AHP)步骤1.建立层次结构模型; 2.构造判断(成对比较)矩阵; 3.层次单排序及其一致性检验; 4.层次总排序及其一致性检验;建立层次结构模型将决策的目标、考虑的因素(决策准则)和决策对象按他们之间的相互关系分成最高层、中间层和最低层,绘制层次结构图。 最高层(目标层):决策的目的、要解决的问题; 中间层(准则层或指标层):考虑的因素、决策的准则; 最低层(方案层):决策时的备选方
TOPSIS熵权法是多目标优化的一种数学方法,与灰色关联度分析法分析类似,通过对实施的方案中的各个因素进行打分,而TOPSIS法是计算每个实施方案中与最优方案与最劣方案的距离,得到评价对象与最优方案的接近程度,作为评价优劣的依据,通常情况下,系数最大的是最优解。TOPSIS熵权分析基本步骤如下:我们在分析中使用的数据是来自实验的结果,具体的试验方案就是一个代号,不参与讨论,得到这样n次实验,m个实
转载
2023-11-25 06:30:12
393阅读
1 内容介绍TOPSIS法用于研究评价对象与‘理想解’的距离情况,结合‘理想解’(正理想解和负理想解),计算得到最终接近程度C值。熵权TOPSIS法核心在于TOPSIS,但在计算数据时,首先会利用熵值计算得到各评价指标的权重,并且将评价指标数据与权重相乘,得到新的数据,利用新数据进行TOPSIS法研究。通俗地讲,熵权TOPSIS法是先使用熵权法得到新数据newdata(数据成熵权法计算得到的权重)
转载
2023-12-07 19:40:00
195阅读
Topsis法(Technique for Order Preference by Similarity to Ideal Solution)可翻译为逼近理想解排序法,国内常简称为优劣解距离法。 Topsis法是一种常用的综合评价方法,其能充分利用原始数据的信息, 其结果能精确地反映各评价方案之间的差距。在之前,我们学习过层次分析法(AHP)。其中,层次分析法模型的局限性是需要我们构造判断矩阵,这
转载
2024-05-05 22:22:35
284阅读
程序名称##序关系分析法、熵权法、反熵权法、TOPSIS综合应用(matlab版+python版)程序功能(对象)适用于对两个及以上的对象进行综合评估;主观赋权法:序关系分析法(输入专家对指标排序及相邻指标相对重要程度)客观赋权法:反熵权法(输入各评估对象的指标原始值)综合权重法:TOPSIS(输入指标主客观权重值)输出:评估对象的综合权重以及综合评分值对比应用领域:根据需求而定,博主研究领域是配
转载
2024-03-04 02:07:38
70阅读
一、熵权法介绍 熵最先由申农引入信息论,目前已经在工程技术、社会经济等领域得到了非常广泛的应用。 熵权法的基本思路是根据指标变异性的大小来确定客观权重。
转载
2023-05-27 16:29:44
421阅读
对暑假建模训练题给出了基于熵权法的topsis法的python代码实现:import numpy as np
import xlrd
import pandas as pd
def read(file):
wb = xlrd.open_workbook(filename=file) #打开文件
sheet = wb.sheet_by_index(0) #通过索引获取表格
转载
2023-07-28 20:30:18
0阅读
一、应用通俗地讲,熵权TOPSIS法是先使用熵权法得到新数据newdata(数据成熵权法计算得到的权重),然后利用新数据newdata进行TOPSIS法研究。二、操作SPSSAU操作(1)点击SPSSAU综合评价里面的‘熵权TOPSIS’按钮。如下图(2)拖拽数据后点击开始分析三、数据处理四、案例背景 当前有6个国家经济技术开发区,分别在政务系统的4个指标上的评分值。数字越大表示指标越
转载
2023-10-14 00:34:42
509阅读
TOPSIS法是一种组内综合评价方法,能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的差距。 ①基本过程为归一化后的原始数据矩阵; ②采用余弦法找出有限方案中的最优方案和最劣方案;然后分别计算各评价对象与最优方案和最劣方案间的距离; ③获得各评价对象与最优方案的相对接近程度,依次最为评价优劣的依据。 优点:该方法对数据分布及样本含量没有严格限制,数据计算简单易行。原始数据: 共有n个待
转载
2023-11-02 12:42:35
344阅读
TOPSIS可翻译为逼近理想解排序法,国内简称为优劣解距离法TOPSIS法是一种常用的综合评价方法,其能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的距离一、模型介绍极大型指标(效益型指标) :越高(大)越好极小型指标(成本型指标) :越少(小)越好中间型指标:越接近某个值越好区间型指标:落在某个区间最好构造计算评分的公式:(x-min)/(max-min)【只有一
转载
2023-12-14 12:25:21
525阅读
TOPSIS法(优劣解距离法)\1. 构造计算评分的公式:(x-min)/(max-min)\2. 统一指标类型 转化为极大型 指标正向化极小型指标转换公式:max-x中间型指标区间型指标:\3. 正向化矩阵标准化\4. 计算得分并归一化:x-min/(max-x)+(x-min)\5. 带权重的TOPSIS
\6. 熵权法
代码:
%% 第一步:把数据复制到工作区,并将这个矩阵命名为X
% (1
转载
2024-05-16 15:05:43
137阅读
import os
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
"""
熵值法是根据指标所含信息有序程度的差异性来确定指标权重的客观赋权方法'
熵用于度量不确定性,仅依赖于数据本身的离散程度;
指标的离散程度越大则熵值越大,
转载
2023-08-28 20:46:18
377阅读
目录一、概念二、基于python的熵权法2.1步骤 mapminmax介绍2.2例题 整体代码三、基于MATLAB的熵权法3.1例题2.2 某点最优型指标处理整体代码 一、概念1.1相关概念熵权法是一种客观赋值方法。在具体使用的过程中,熵权法根据各指标的变异程度,利用信息熵计算出各指标的熵权,再通过熵权对各指标的权重进行修正,从而得到较为客观的指标权重。一般
转载
2023-10-12 17:22:40
239阅读