目录 文章目录目录前言句法分析技术1句法分析技术2句法分析技术3句法分析技术4 前言硕士生涯结束,开始专心做一件自己觉得有用的工具,先做工程,后搞理论。 自然语言处理是一个非常难的问题,同时是人工智能皇冠上的明珠。 接下来会记录一系列自然语言处理的笔记句法分析技术1基于规则+统计结合的句法分析 判定输入的词序列是否合法,短语结构树,有向无环图。 句子:{主『定语,中心』}{谓语『状,谓{动宾【动,
第1章 新手上路自然语言处理是一门融合了计算机科学、人工智能以及语言学的交叉学科。这门学科研究的是如何通过机器学习等技术,让计算机学会处理人类语言,乃至实现终极目标----理解人类语言或人工智能。自然语言处理这个术语没有被广泛的定义,注重语言学结构的学者喜欢使用计算语言学(CL),强调最终目的的学者更偏好自然语言理解(NLU)。1.1 自然语言与编程语言1.1.1 词
第六章 隐式马尔可夫模型与最大熵模型马尔可夫模型发展出了隐式马尔可夫模型HMM和最大熵模型MaxEnt,与马尔可夫有关的最大熵模型称为最大熵马尔可夫模型MEMM。HMM和MEMM都是序列分类器。给定一个单元(单词、字母、语素、句子等)的序列,可以计算在可能的标号上的概率分布,并选择最好的标号序列。在语音和语言处理中,到处都会遇到序列分类的问题。MaxEnt并不是序列分类器,因为它常把一个类指派给一
如果你已经在AI领域入门,并且有一定的理论基础,那么也可以通过这一章节快速对一些基础知识进行复习,方便后面更加高效的学习。接下来我们一起看一下第一章所讲内容。1.1 数学和Python的复习该节主要讲解了神经网络中向量、矩阵等内容。1.1.1 向量和矩阵我们知道向量是同时拥有大小和方向的量。向量可以表示为排成一排的数字集合,在Python实现中可以处理为一维数组。与此相对,矩阵是排成二维形状(长方
  今天,我们要根据我们的经验来概述和比较最流行,最有用的自然语言处理库。  今天,自然语言处理(NLP)变得非常流行,在深度学习发展的背景下,自然语言处理(NLP)变得尤其引人注目。NLP是人工智能的一个领域,旨在理解和提取文本中的重要信息,并根据文本数据进行进一步的培训。主要任务包括语音识别和生成,文本分析,情感分析,机器翻译等。  在过去的几十年中,只有经过适当的语言教育的专家才能从事自然
BERT(Bidirectional Encoder Representation from Transformers)是由Devlin等人在2018年提出的基于深层Transformer的预训练语言模型。BERT不仅充分利用了大规模无标注文本来挖掘其中丰富的语义信息,同时还进一步加深了自然语言处理模型的深度。这一节将着重介绍BERT的建模方法,其中包括两个基本的预训练任务以及两个进阶预训练任务。
文章目录5.1 概率和语言模型5.1.1 概率视角下的word2vec5.1.2 语言模型5.1.3 将CBOW模型用作语言模型的效果怎么样?5.2 RNN5.2.1 循环神经网络5.2.2 展开循环5.2.3 Backpropagation Through Time5.2.4 Truncated BPTT5.2.5 Truncated BPTT的mini-batch学习5.3 RNN的实现5.
特点展示如何使用基于 Python 的深度学习库 PyTorch 应用这些方法演示如何使用 PyTorch 构建应用程序探索计算图和监督学习范式掌握 PyTorch 优化张量操作库的基础知识概述传统的 NLP 概念和方法学习构建神经网络所涉及的基本思想使用嵌入来表示单词、句子、文档和其他特征探索序列预测并生成序列到序列模型学习构建自然语言处理生产系统的设计模式内容介绍 监督学习范式观察和目标
HMM模型介绍由隐状态序列,生成可观测状态的过程。 两个基本假设:第t个隐状态只和前一时刻的t-1隐状态相关,与其他时刻的隐状态无关。在任意时刻t的观测值只依赖于当前时刻的隐状态值,和其他时刻的隐状态无关。HMM模型参数转移概率:t时刻的隐状态qi转移到t+1时刻的隐状态qj的概率。发射概率:t时刻由隐状态qj生成观测状态vk的结果。初始隐状态概率:自然语言序列中第一个字o1的实体标记是qi的概率
10.1自然语言理解查询数据库如果有人提出一个问题:Which country is Athens in?得到的回答应该是:Greece.这个数据可以通过数据库语言得到答案: SELECT Country FROM city_table WHERE City= 'athens' 这里有一个文法,可以把句子转换成SQL语句: >>>nltk.data.show_cfg('gr
转载 2024-06-14 23:16:10
105阅读
大家好,我是小发猫。今天又要跟大家讲故事了。  18日结束时,BERT( 《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》)刷新了所有主要NLP公共号码和新闻媒体,创下了11项自然语言处理记录的新纪录,也被称为2019年最强的自然语言处理模式。  作者很早就把论文读完了,很长时间没有
 如果你刚接触自然语言处理并对她感兴趣,最好读几本这方面的书籍,除了能让你知道自然语言处理各个领域是干什么的外,还能培养一下NLP的感觉。以下四本书是我读研期间阅读和接触过的,如果您还有好书推荐,欢迎补充。 1、 《自然语言处理综论》(Speech and Language Processing: An Introduction to Natural Language Processin
语料库和词汇资源1、自然语言工具包(NLTK)2、获取文本语料1.语料库古腾堡语料库网络和聊天文本布朗语料库路透社语料库就职演说语料库标注文本语料库在其他语言的语料库语料库结构载入自己的语料库2.条件频率分布理解条件频率分布使用双连词生成随机文本3、词典资源1. 词汇列表语料库(简单的词典)2. 发音的词典3. 比较词表4. 词汇工具Toolbox和Shoebox4、WordNet1. 意义和同
作者:LogM1. 源码来源本文对应的源码版本:Commits on Jun 27 2019, 979d8a9ac99c731d653843890c2364ade0f7d9d3FastText 论文:[1] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, Enriching Word Vectors with Subword Information[
自然语言处理之Attention机制  一说Attention,一些人就说seq2seq,self-attention,transformer,把attention比作nlp方向的核武器。但是实际上attention更早出现于CV领域,之后2016年在Relation Extraction(至少有这个)方向上有着较早的应用。直到2017年才被大规模应用于Seq2Seq model。因此,atten
中文语言的机器处理直观上,一个自然语言处理系统最少三个模块:语言的解析、语义的理解及语言的生成。计算机处理自然语言最早应用在机器翻译上,此后在信息检索、信息抽取、数据挖掘、舆情分析、文本摘要、自动问答系统等方面都获得了很广泛的应用。虽然已经产生了许多专业技术作用域语言理解的不同层面和不同任务,例如,这些技术包括完全句法分析、浅层句法分析、信息抽取、词义消歧、潜在语义分析、文本蕴含和指代消解,但是还
最近做 Sentiment Analysis 的问题,用 IMDB,Twitter 等 Dataset,拿到原始的一条条文本,直接喂给 Model 肯定不行,需要进行对文本进行预处理。预处理的精细程度很大程度上也会影响模型的性能。这篇 Blog 就记录一些预处理的方法。Remove Stop Words Stop Words,也叫停用词,通常意义上,停用词大致分为两类。一类是人类语言中包含的功能词
 第1章 自然语言处理简介NLTK基础教程——用NLTK和Python库构建机器学习应用现在,让我们先从介绍自然语言处理(NLP)开始吧。众所周知,语言是人们日常生活的核心部分,任何与语言问题相关的工作都会显得非常有意思。希望这本书能带你领略到NLP的风采,并引起学习NLP的兴趣。首先,我们需要来了解一下该领域中的一些令人惊叹的概念,并在工作中实际尝试一些具有挑战性的NLP应用。在英语环
本节书摘来自异步社区《Python自然语言处理》一书中的第1章,第1.4节,作者[美]Steven Bird,Ewan Klein,Edward Loper, 陈涛,张旭,崔杨,刘海平 译1.4 回到Python:决策与控制到目前为止,小程序有了一些有趣的特征:处理语言的能力和通过自动化节省人力的潜力。程序设计的一个关键特征是让机器能按照我们的意愿决策,在遇到特定条件时执行特定命令,或者对文本数据
一,自然语言处理自然语言处理(NLP) :自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。自然语言处理是一门融语言学、计算机科学、数学于一体的科学。因此,这一领域的研究将涉及自然语言,即人们日常使用的语言,所以它与语言学的研究有着密切的联系,但又有重要的区别。自然语言处理并不是一般地研究自然语言,而在于研制能有效地实现自
  • 1
  • 2
  • 3
  • 4
  • 5