文章目录一. 样本不均匀带来的影响二. 处理样本不均衡问题的方法2.1 权重法2.2 采样法三. 实例3.1 下采样3.2 SMOTE方法参考: 一. 样本不均匀带来的影响我们从样本数据中知道,正常的交易数据有2.8w左右数据,异常的交易数据有492,正常的交易数据与异常交易数据差距非常大,这样会导致我们模型的效果不佳。下面我们来列举一个案例:代码:import pandas as pd imp
在机器学习任务中,我们经常会遇到这种困扰:数据不平衡问题。数据不平衡问题主要存在于有监督机器学习任务中。当遇到不平衡数据时,以总体分类准确率为学习目标的传统分类算法会过多地关注多数类,从而使得少数类样本的分类性能下降。绝大多数常见的机器学习算法对于不平衡数据集都不能很好地工作。本文介绍几种有效的解决数据不平衡情况下有效训练有监督算法的思路: 1、重新采样训练集 可以使用不同的数据集。有两种方法使
解决样本类别分布不均衡的问题1 哪些运营场景中容易出现样本不均衡1.1 异常检测场景1.2 客户流失场景1.3 罕见事件的分析1.4 发生频率低的事件2 通过过抽样和欠抽样解决样本不均衡2.1 过抽样2.2 欠抽样3 通过正负样本的惩罚权重解决样本不均衡4 通过组合/集成方法解决样本不均衡5 通过特征选择解决样本不均衡6 代码实操:Python处理样本不均衡 所谓的不均衡指的是不同类别的样本量
所谓的不平衡数据集指的是数据集各个类别的样本量极不均衡。以二分类问题为例,假设正类的样本数量远大于负类的样本数量,通常情况下通常情况下把多数类样本的比例接近100:1这种情况下的数据称为不平衡数据。不平衡数据的学习即需要在分布不均匀的数据集中学习到有用的信息。
转载 2023-05-24 09:14:49
160阅读
Python金融大数据风控建模实战》 第12章 样本不均衡处理本章引言Python代码实现及注释 本章引言在实际的评分卡开发过程中,会出现分类样本不均衡的情况,比如违约的样本远远小于不违约的样本,这就是样本不均衡的分类问题。通常将数量较少的样本(坏样本)定义为正样本,将数量较多的样本(好样本)定义为负样本。要求模型对正样本(坏样本)和负样本(好样本)均具有较好的区分能力,但是在样本不均衡的情况
随机森林_处理不均衡数据balanced 加上balanced 参数# 处理不均衡数据from sklearn.ensemble import RandomForestClassifierfrom sklearn import datasetsfrom sklearn.feature_selection import SelectFromModel​iris = datasets....
原创 2022-07-18 14:54:00
220阅读
一、概述公司使用是自己搭建的hadoop集群,版本2.7.3,最近发现出现了hdfs数据存储不均衡的现象,其中有一个datanode使用了65%,而有一个只使用了20%。hadoop集群使用的时间长了会出现这种数据不均衡的问题,当然hadoop提供了解决方案,就是使用balancer,默认进行的是datanode级别的数据均衡,但是2.X版本还不支持datanode内的磁盘之间数据均衡,hadoop在3.0以后的版本里面提供了相关的支持,参考https://hadoop.apache.org/docs/
转载 2022-01-22 17:56:08
293阅读
一、概述公司使用是自己搭建的hadoop集群,版本2.7.3,最近发现出现了hdfs数据存储不均衡的现象,其中有一个datanode使用了65%,而有一个只使用了20%。hadoop集群使用的时间长了会出现这种数据不均衡的问题,当然hadoop提供了解决方案,就是使用balancer,默认进行的是datanode级别的数据均衡,但是2.X版本还不支持datanode内的磁盘之间数据均衡,hadoop在3.0以后的版本里面提供了相关的支持,参考https://hadoop.apache.org/docs/
转载 2021-08-10 09:38:06
560阅读
# 处理数据不均衡问题的方法 数据不均衡是指在数据集中,不同类别的样本数量差异较大的情况。这种问题在实际应用中很常见,例如金融欺诈检测、疾病诊断等领域。由于不均衡数据集可能导致模型的训练效果偏向于数量较多的类别,因此需要采取一些方法来解决数据不均衡问题。 ## 1. 了解数据集 首先,我们需要对数据集进行仔细的观察和分析,了解数据不均衡的原因和影响。可以统计各个类别的样本数量,并绘制直方图或
原创 2023-07-21 13:01:14
164阅读
 定义以二分类问题为例,假设我们的数据集是S,数据集中的多数类为S_maj,少数类为S_min,通常情况下把多数类样本的比例为100:1,1000:1,甚至是10000:1,这种情况下为不平衡数据,不平衡数据的学习即需要在如此分布不均匀的数据集中学习到有用的信息。 问题:不均衡数据理解预测起来很简单,永远都是预测多的数据的那一方,这样准没错,特别是数据多很多的情况的那一方,比
1. 产生新数据型:过采样小样本(SMOTE),欠采样大样本。 过采样是通过增加样本中小类样本的数据量来实现样本均衡。其中较为简单的方式是直接复制小类样本,形成数量上的均衡。这种方法实现简单,但会由于数据较为单一而容易造成过拟合。 SMOTE过采样算法: 针对少数类样本的xi,求出其k近邻。随机选取k紧邻中一个样本记为xn。生成一个0到1之间的随机数r,然后根据Xnew = xi + r * (x
所谓不均衡指的是不同类别的样本量差异非常大。从数据规模上分为大数据分布不均衡和小数据分布不均衡两种。大数据分布不均衡数据规模大,其中的小样本类的占比较少。但从每个特征的分布来看,小样本也覆盖了大部分或全部特征。例如:1000万条数据,其中占比50万条的少数分类样本属于这种情况。小数据分布不均衡数据规模小,其中小样本的占比也较少,这会导致特征分布的严重不平衡。例如:1000条数据,其中占有10条
数据--样本不平衡处理不同类别的样本量差异大,或少量样本代表了业务的关键数据,属于样本不平衡的情况,要求对少量样本的模式有很好的学习。大数据情况下:整体数据规模大,小样本类别占比少,但是小样本也覆盖大部分或全部特征;小数据情况下,整体数据规模小,小样本类别也少,导致样本特征分布不均匀。一般比例差异超过10倍就要注意,超过20倍就得处理工程方法中,通常从三个方面处理样本不均衡:扩大数据集,但是在扩大
1、The CIFAR-10 dataset10类,一共含有60000张32*32的彩色图片,每类大概6000张,测试集大概1000张,5000张训练集网址:http://www.cs.toronto.edu/~kriz/cifar.html2、imageNet数据集网址:http://image-net.org/3、ImageFolder 4、LSUN Classification网址
转载 1月前
24阅读
如何处理不均衡数据?今天让我们聊聊在机器学习中遇到了一些不均衡数据的时候,我们应该怎么做.不均衡数据通常来说形式都比较固定,并且也比较好区分.比如说你手头上现在有苹果和梨,在这个时候你手中的数据都跟你说,全世界的人都吃梨哦,这个时候你去找一个路人甲,问问他你是不是喜欢吃梨啊,这个时候我们大多数人都会猜测,这个人会吃梨,这个时候梨就可以作为优势数据变得很骄傲了.这个时候,让我们来引入今天的问题,如
原创 2020-11-23 15:20:50
889阅读
逻辑回归_处理不均衡数据class_weight=“balanced” 参数 根军样本出现的评
原创 2022-07-18 14:51:55
159阅读
引言在分类问题中正负样本比例不平衡是很常见的问题,例如在预测CVR的时候,会有大量的负例,但是正例的数目缺不多,正负样本比例严重失衡。这是一个值得思考的问题。解决思路首先我们需要思考的是我们可否通过扩大数据集,得到更多的比例较小的样本,使新的训练集样本分布较为均衡,如果可行的话,那么这种方法值得我们考虑。 若不可行的话,可以试着从如下两个角度出发考虑:数据的角度算法/模型的角度数据的角度故名思议,
例如:正例样本990个,负例样本10个,则分类器全分为正,也有99%的Accuracy。解决方式:1. 降采样:减少数量较多那一类样本的数量;    随机降采样;    先对该类聚类,每个类里选一些代表加进训练集;    EasyEnsemble:通过多次从多数类样本有放回的随机抽取一部分样本生成多个子数据集,将每个子集与少数类
1、类别不均衡会对分类性能产生有害的影响。 2、随着任务规模的扩大,类别不均衡性对分类性能的影响越大。 3、类别不均衡的影响不能简单地以训练样本数量的不足来解释,它依赖于各类样本的分布。过采样(oversampling,相当于插值),下采样(downsampling,相当于压缩),两阶段训练(two-phase training),以及阈值化(threholding),阈值化可以补偿先验的类别
我们在处理医疗诊断等问题,会遇到不平衡数据,即病人的数据量相对于正常人的数据量要小的多。而大多数机器学习算法需要较为平衡的数据。如果不对不平衡数据处理,往往会导致模型向majority class方向偏移。在Python中,有个很好用的库imbalanced-learn——imblearn.在本博文,只借鉴论文进行关键点总结。参考先放参考,后文是我在阅读参考资料时整理的笔记,因此难免疏漏.实现的采
  • 1
  • 2
  • 3
  • 4
  • 5