在Jupyter Notebook上使用Python+opencv实现如下图像缺陷检测。关于opencv库的安装可以参考:Python下opencv库的安装过程与一些问题汇总。 1.实现代码import cv2
import numpy
from PIL import Image, ImageDraw, ImageFont
#用于给图片添加中文字符
def ImgText_CN(img
转载
2023-05-23 19:45:58
468阅读
施努卡(SCHNOKA)成立于2010年,先后在上海,苏州及武汉建立了分公司。国家高新技术企业,致力于打造面向智能产线与智慧工厂最强控制大脑的高科技公司。公司围绕感知&识别核心技术构建智能装备,基于机器人视觉算法与单机器人工作站、多机器人群体共融、行业定制化应用。打造产品体系,面向智能生产线、智慧物流等场景实现软件定义智能。SCHNOKA (施努卡)在3D机器视觉算法、机器人柔性控制、手眼
文章目录简介程序解析处理结果预览算法讲解 简介detect_indent_fft.hdev是halcon的示例程序,是傅里叶变换进行缺陷检测的一个例子,主要是傅里叶变换在复杂背景下的缺陷检测。这个程序展示了如何利用快速傅里叶变换(FFT)对塑料制品的表面进行缺陷检测,大致分为三步:1、用高斯滤波器构造一个合适的滤波器(将原图通过高斯滤波器滤波);2、将原图和构造的滤波器进行快速傅里叶变换;3、利
一、利用直方图的方式进行批量的图片缺陷检测(方法简单)二、步骤(完整代码见最后)2.1灰度转换(将原图和要检测对比的图分开灰度化)
灰度化的作用是因为后面的直方图比较需要以像素256为基准进行相关性比较
img = cv2.imread("0.bmp")
#原图灰度转换
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
#循环要检测的图,均灰度化
for i
转载
2023-08-03 19:48:47
525阅读
代码看起来可以工作,但不是以你“想当然“”的方式。如果一段代码直接出错,抛出了异常,我不认为这是陷阱。比如,Python程序员应该都遇到过的“UnboundLocalError", 示例: >>> a=1
>>> def func():
... a+=1
... print a
...
>>> fu
一、GIL1、定义: GIL全局解释器锁,每个线程执行过程中必须先获得GIL,保证同一时刻只有一个线程在执行, GIL与python语言没关系,是CPython解释器才有的,在IO操作等可能会引起阻塞的system call之前,可以暂时释放GIL,但在执行完毕后,必须重新获取GIL Python 3.x使用计时器(执行时间达到阈值后,当前线程释放GIL)或Python 2.x,tickets计数
转载
2023-10-26 12:05:55
74阅读
# Python 缺陷检测
在软件开发过程中,缺陷是无法避免的。缺陷可能导致程序崩溃、功能错误或者性能下降。因此,及时发现和修复缺陷是保证软件质量的关键一环。在Python开发中,我们可以使用一些工具和技术来帮助我们进行缺陷检测和调试。本文将介绍一些常用的Python缺陷检测方法,并以代码示例进行说明。
## 静态代码分析工具
静态代码分析工具是一种自动化工具,它能够在不运行代码的情况下检查
原创
2023-07-15 13:01:00
230阅读
截至到本次教程,我们已经基本掌握了OpenCV常用的一些功能,实际上已经可以处理很多问题了,故从本教程开始,示例代码将编写为一个固定函数,以便调用,另外将不再给出完整代码,比如导入库将不再另行贴出,一些基本的代码也不再贴出,只贴出核心部分,我会将核心部分整理为一个方便调用的函数。我们在前面讨论了轮廓的特征以及属性,今天我们将综合之前学的内容讨论轮廓的高级功能。凸缺陷对象上的任何凹陷都被称为凸缺陷,
随着自动化生产设备的普及,工业机器人在各行各业的应用也越来越广泛,越来越多的生产线由自动化设备取代人工操作,实现自动化生产。在机器人分拣过程中,机器人不仅可以将不同规格和质量的产品准确地放入指定的托盘中,而且能够通过视觉系统识别出物体的表面缺陷并进行分类。 随着工业4.0时代的到来,传统的基于视觉检测技术已经无法满足现代工业生产的要求,视觉检测技术成为了现代工业生产中必不可少的一部分。
目前,有四种检测方法一:主观目测法二:密度检测法(在线检测):1,彩色反射密度计将一束光投射到印刷品上,比较表面反射(或透射)的光强度与照射在表面上的光强度,通过现有的逻辑关系来计算密度值,通过该密度值来判断是否存在缺陷。三:色度检测法(在线检测):将一束光投射到印刷品上,通过仪器获取颜色的三刺激值,换算成可以对比的数值,然后与样本的值比对,判断是否存在缺陷。四:基于数字图像处理技术的方法(在线检
前言 目前,基于机器视觉的表面缺陷已经在各个工业领域广泛取代人工视觉检测,包括3C、汽车、家电、机械制造、半导体电子、化工、制药、航空航天、轻工等行业。许多基于深度学习的缺陷检测方法也被广泛应用于各种工业场景。本文的代码实战,是基于YOLOv5目标检测算法,在NEU表面缺陷数据集上实现钢材表面缺陷检测。要求Python>=3.7.0,PyTorch>=1.7。作者 | Ctr
今天来一个缺陷检测的实例,如下是原图,第二个和第三个黑色部件有缺陷 思路: ①提取OK部件轮廓做model ②遍历部件轮廓,做差分,形态学处理 ③结果判断绘制 上代码(含注释):import cv2
import numpy as
转载
2023-10-13 11:03:01
134阅读
在上一篇文章中,我们讲到了,使用itertools.tee可以让一个生成器被多次完整遍历:import itertools
g = generator()
g_1, g_2, g_3 = itertools.tee(g, 3)
for row in g_1:
print(row)
for row in g_2:
print(row)
for row in g_3:
表面瑕疵检测常见的检测主要有物体表面划痕,污点,缺料、平面度、破损、边框整齐度、物体表面亮度,皱褶、斑点、孔洞等 表面瑕疵检测设备凝聚了机器视觉领域的多项先进技术成果,并融入了多项创新的检测理念,既可以和现有生产线无缝对接检测,也可以离线进行检测,在对材料表面的瑕疵以及半透明材料内部瑕疵进行快速检测的同时能够直观的给予生产反馈,可以广泛应用于塑化工业、造纸及纤维工业、电子工业、金属工
基于统计分类的方法: (1)基于KNN方法(最近邻法):利用相似度,找出k个训练样本,然后打分,按得分值排序。 (2)基于Naive Bayes算法:计算概率,构建分类模型。引导: 医生对病人进行诊断就是一个典型的分类过程,任何一个医生都无法直接看到病人的病情,只能观察病人表现出的症状和各种化验检测数据来推断病情,这时医生就好比一个分类器,
通过不断创新,机器视觉系统为更快、连续和更有效的成像开辟了道路。因此,他们确保越来越简单和准确地识别人眼不可见的问题。在此过程中,缺陷检测一直是机器视觉和质量控制的核心。缺陷检测检测差异在基础上,这些系统使用相机和成像传感器来检测缺陷,包括线扫描、面扫描、扩展光谱和智能相机,以及高速帧采集器和 X 射线检测器面板。它们旨在在高速、高分辨率以及标准和更具挑战性的环境中有效运行。视觉处理器和软件然后使
缺陷管理工具: 1. Bugzilla 2. Bugfree 3. TestDirector (Quality Center) 4. ClearQuest 5. JIRA 6. Mantis 7. Bugzero 8. BugTracker 9. URTracker 10.KisTracker 11.TestLink 12、JTrac 13、BugNet 14、BugO
转载
2014-08-11 17:34:00
99阅读
摘要:智能PCB板缺陷检测系统用于智能检测工业印刷电路板(PCB)常见缺陷,自动化标注、记录和保存缺陷位置和类型,以辅助电路板的质检。本文详细介绍智能PCB板缺陷检测系统,在介绍算法原理的同时,给出Python的实现代码以及PyQt的UI界面和训练数据集。在界面中可以选择各种图片、视频进行检测识别;可对图像中存在的多种缺陷进行识别分类,检测速度快、识别精度高。博文提供了完整的Python代码和使用
转载
2023-11-02 10:45:13
240阅读
工业外观缺陷检测方法详细介绍如下:一、超声波探伤检测超声波探伤检测是根据声波在缺陷处发生波形变化的原理来检测缺陷。声波在工件内的反射状况就会显示在屏幕上,根据反射波的时间及形状来判断工业制造件内部缺陷及材料性质的方法,超声波探伤检测技术常应用于各种金属管道内部的缺陷检测。二、光学机器视觉缺陷检测光学机器视觉缺陷检测技术的基本原理是将特定的光源照在待测制造件表面上,利用高清高速摄像机获得制造件表面图
转载
2023-08-07 13:55:01
334阅读
纸张缺陷在线检测仪高精度快速检测表面瑕疵——无锡赛默斐视专业视觉检测技术高品质的纸张不允许出现孔洞、夹杂、破损等各类瑕疵。纸张表面瑕疵检测系统能在线对生产制造过程中产生的表面瑕疵进行高速、精确的检测。赛默斐视纸张缺陷在线检测仪能根据表面瑕疵的特征,实时识别并对瑕疵分类,结合现场工艺在线报警、打标并自动记录位置(卷长方向和宽度方向)。它广泛应用于新闻纸、特种纸、铜版纸、白板纸、美术纸、文化纸、香烟纸
转载
2023-10-16 16:07:56
88阅读