梯度下降法博客分类:数学与计算 一、基本概念梯度下降法,就是利用负梯度方向来决定每次迭代的新的搜索方向,使得每次迭代能使待优化的目标函数逐步减小。梯度下降法是2范数下的最速下降法。最速下降法的一种简单形式是:x(k+1)=x(k)-a*g(k),其中a称为学习速率,可以是较小的常数。g(k)是x(k)的梯度。二、导数(1)定义设有定义域和取值都在实数域中的函数 。若 在点 的某个邻域内有定义,则
Nesterov 加速算法梯度下降动量梯度下降Nesterov 梯度下降思考 梯度下降是我们在优化或者深度学习中经常要用到的算法,基于最原始的梯度下降算法,有很多加速算法被提出,今天我们着重介绍Nesterov 加速算法。Nesterov 加速算法可以在理论上证明有比梯度下降更快的收敛率,本文不会重点介绍收敛率的证明,而是会通过一些推导从几何直观上给出为什么使用Nesterov 的技术可以对原来
转载
2024-06-05 04:31:24
262阅读
概率: 梯度: 个人理解,梯度可以理解为出现的现象中,该现象变化的一个度,官方解释就是一个一元函数变化的斜率,也就是它的导数,按照生活上的解释可以用
一、背景随着机器学习和深度学习的发展,优化算法也变得越来越重要。而梯度下降是深度学习中最常用的优化算法之一。然而,传统的梯度下降算法在训练深度神经网络时存在一些问题,例如收敛速度慢、易陷入局部最优解等。因此,研究人员提出了一系列的改进算法,其中包括了Nesterov加速梯度法。Nesterov加速梯度法是一种优化算法,它可以更快地找到全局最优解,并且在训练深度神经网络时具有良好的性能。它是由Yur
转载
2024-02-21 14:04:07
211阅读
一、机器学习算法的常见流程一般的机器学习分类算法,我们可以通常从三个步骤得到,以SVM算法为例,这里规定正例的y为1,负例的y为-1Step 1: Function Set(Model) Step 2: Loss function理想情况下的loss function(ideal loss)是当g(x)和y不相等的情况下的样本相加,但是这种情况下的损失函数是不可微分的,所以无
转载
2024-05-14 15:05:32
249阅读
梯度下降(Gradient Descent)算法是机器学习中使用非常广泛的优化算法。当前流行的机器学习库或者深度学习库都会包括梯度下降算法的不同变种实现。【思想】:要找到某函数的最小值,最好的方法是沿着该函数的梯度方向探寻,例如物理学上的加速度与速度的关系。当加速度为零时,此时速度可能是最大,也有可能是最小,这取决于函数曲线。【步骤】:随机取一个自变量的值 ;对应该自变量算出对应点的因变量值:;计
转载
2024-05-11 10:24:17
68阅读
梯度下降法又叫最速下降法,英文名为steepest descend method.用来求解表达式最大或者最小值的,属于无约束优化问题。梯度下降法的一种简单形式是:x(k+1)=x(k)-a*g(k),其中a为学习效率,可以是较小的常数,g(k)是x(k)的梯度,直观的说,就是在一个有中心的等值线中,从初始值开始,每次沿着垂直等直线方向移动一个小的距离,最终
梯度下降 (一): 批梯度下降、随机梯度下降、小批量梯度下降、动量梯度下降、Nesterov加速梯度下降法前言梯度下降法(GD / Gradient Descent)单变量线性回归模型(Univariate Linear Regression)批梯度下降法(Batch GD / Batch Gradient Descent)随机梯度下降法(SGD / Stochastic Gradient De
转载
2024-06-03 10:05:50
575阅读
Nesterov’s Accelerated Gradient Descent一般的梯度下降算法的收敛速率为 o(1/t),t表示迭代的次数。但是人们已经证明了随着迭代次数t的增加。收敛速率可以到达o(1/t2).1.简介:加速梯度算法(AGD)是梯度算法(GD)的一个改进的版本。Nesterov 在1983年首次提出。人们已经证明AGD算法是所有基于梯度算法(或者说一阶)算法中最好的方法。然而原
转载
2024-03-16 17:04:53
534阅读
原文链接:http://ihoge.cn/2018/GradientDescent.html最近在看机器学习相关的基础算法原理,意外发现一个大神的分享网页,简洁并且语言精炼,思路很清楚,仔细研究会对算法原理有新的理解,另外还有代码分享,可以手码.引言李航老师在《统计学习方法》中将机器学习的三要素总结为:模型、策略和算法。其大致含义如下:模型:其实就是机器学习训练的过程中所要学习的条...
转载
2021-09-01 16:13:48
1075阅读
Differences between Gradient Descent and Steepest Descent Method梯度法(Gradient Descent Method)和最速下降法(Steepest Descent Method)在Boyd 经典的凸规划教材《Convex Optimization》中,本就是无约束极值问题(Unconstrained Minimiza
转载
2024-05-25 17:36:01
59阅读
实例:近似点梯度法、 Nesterov 加速算法求解 LASSO 问题实例:近似点梯度法、 Nesterov 加速算法求解 LASSO 问题考虑 LASSO 问题构建 LASSO 优化问题求解 LASSO 优化问题结果可视化结果分析 实例:近似点梯度法、 Nesterov 加速算法求解 LASSO 问题考虑 LASSO 问题在连续化策略下,分别利用近似点梯度法和两种 Nesterov 加速算法对
转载
2024-09-29 22:03:35
78阅读
文章目录一,张量 (Tensors)1. tensor的属性2.创建张量3.数据初始化4,常用方法二,PyTorch计算梯度数值1.Autograd2. 扩展Autograd 参考资料:https://handbook.pytorch.wiki/chapter1/1.1-pytorch-introduction.htmlhttps://www.bookstack.cn/read/PyTorch-
一、前向分步算法在Adaboost算法中,我们的最终目的是通过构建弱分类器的线性组合:
转载
2024-06-12 14:21:36
124阅读
【翻译自 : Gradient Descent With Nesterov Momentum From Scratch】 【说明:Jason Brownlee PhD大神的文章个人很喜欢,所以闲暇时间里会做一点翻译和学习实践的工作,这里是相应工作的实践记录,希望能帮到有需要的人!
转载
2024-06-05 06:30:56
137阅读
机器学习10:如何理解随机梯度下降1.梯度下降法 理解随机梯度下降,首先要理解梯度下降法。 大多数机器学习或者深度学习算法都涉及某种形式的优化,优化指的是改变 x以最小化或最大化某个函数的任务, 我们通常以最小化 指代大多数最优化问题, 最大化可经由最小化算法最小化-来实现。&n
CS299课程的笔记为什么梯度方向下降最快方向导数定义:函数在某一特定方向上的
原创
2022-08-04 22:00:31
296阅读
首先是对感知器的简单回顾,假设现有的训练集为 D,共有 n 个训练数据,每个数据都有 m 个输入特征和一个输出标签。一个 epoch 就是遍历一次整个训练集,对于每一个训练数据,都计算其预测、计算误差、更新参数。 在一个 epoch 中,每次针对一个训练数据进行参数更新的方法,称为在线方法或者随机梯度下降;而在一个 epoch 中将参数在每个训练数据上需要更新的值记录下来,最后叠加在一起再对参数
转载
2024-03-07 10:05:55
190阅读
在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练。其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点。下面我们以线性回归算法来对三种梯度下降法进行比较。一般线性回归函数的假设函数为: 对应的损失函数为:&nb
转载
2024-04-03 20:27:51
78阅读
参考: https://yjango.gitbooks.io/superorganism/content/ti_du_xia_jiang_xun_lian_fa.htmlhttps://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw==&mid=2650720663&idx=3&sn=d9f671f77be23a148d1830448154a
转载
2024-08-21 10:53:10
58阅读