之前这篇文章介绍了MATLAB环境构建DeepLabV3+进行云层分割。但数据来源有完整标签,因此少了人工标注过程,在泛化到自己的数据集时可能会遇到障碍。1.数据集构建因此在MATLAB中找了自带的数据E:\MATLAB2020b\toolbox\vision\visiondata\stopSignImages (我用的2020b版本)。将这个文件夹中的图片复制出来,在根目录下建一个新的文件夹 E
这篇文章收录于ECCV2020,由北京大学、商汤科技、香港中文大学提出的基于RGB-D图像的语义分割算法。充分考虑了RGB图像信息和深度信息的互补,在网络结构中引入了视觉注意力机制分别用于特征分离与聚合。最终在室内和室外环境的数据集上都进行了实验,具有良好的分割性能。代码地址:https://github.com/charlesCXK/RGBD_Semantic_Segmentation_PyTo
mmc io的读写从mmc_queue_thread()的获取queue里面的request开始。先列出调用栈,看下大概的调用顺序, 下面的内容主要阐述这些函数如何工作。host->ops->request() // sdhci_request()mmc_start_request()mmc_start_req()mmc_blk_issue_rw_rq()mmc_blk_issue_r
作者:晟 沚 编辑:赵一帆目前分割主要存在问题分割网络中的池化操作在减少feature的空间分辨率的同时增加了模型感受野,这也是模型应对小型平移具有鲁棒性的根本原因。但是连续的下采样得到的feature map 就会丢失一些low-level中关键信息(例如边沿,边界等)。这就让识别和准确定位产生了矛盾。如果网络不采取任何池化操作,这在目标边界定位上效果较好,但是识别性能差。 
极市导读本文对已有成功分割方案进行了重审视并发现了几个有助于性能提升的关键成分,作者们设计了一种新型的卷积注意力架构方案SegNeXt。在多个主流语义分割数据集上,SegNeXt大幅改善了其性能。在Pascal VOC2012测试集上,SegNeXt凭借仅需EfficientNet-L2+NAS-FPN的十分之一参数量取得了90.6%mIoU指标。NeurIPS2022:https://githu
中心思想探究为什么one-stage detection(dense approach)会比two-stage(sparse approach)性能低。查出:根本原因是分类分支中前景&背景的比例严重失衡为了解决这个问题,从Loss入手提出了focal loss,用于调整Loss低(分得比较好的)样本的权重,从而防止Loss高的少量样本被大量Loss低的样本淹没为了验证focal loss的
转载 3月前
154阅读
今日,第34届人工智能顶级会议AAAI 2020正式开幕(2月7日-2月12日在美国纽约举办)。AAAI(Association for the Advance of Artificial Intelligence——美国人工智能协会)是人工智能领域的主要学术组织之一,其年会每年都吸引了大量来自学术界和产业界的研究员、开发者投稿,参会。商汤科技研究团队发表论文《Every Frame Counts
语法制导定义SDD综合属性(合成属性)这一部分比较好理解,直接看图就可以明白,简单点说,就是右部候选式的符号的属性计算左部被定义的符号。而对于终结符的综合属性,已经做出了具体的规定,因此SDD中是没有计算终结符属性值的语义规则的。一般是自下而上传递语义信息。继承属性可以简单的理解,如果一个属性不是合成的,则可以称作继承属性。(书本原话)对于继承属性需要清楚终结符是没有继承属性的。继承属性就是通过右
  0. 实时语义系列 AttaNet:strip pooling的进化,快又好 实时语义分割DDRNet 1. 简介 前面也介绍了几篇强大的实时语义分割项目或者paper,这里再介绍一个来自美团CVPR2021的项目:STDC-Seg,既然是上了CVPR的,肯定是精度又高,速度上也很能打的。这里先看论文给出的直观对比图。再附上,我在TX2上实测对比表格:可以看到,STDC-Seg,Atta
原创 2021-09-07 11:27:13
1448阅读
【论文复现赛】DMNet:Dynamic Multi-scale Filters for Semantic Segmentation 本文提出了动态卷积模块(Dynamic Convolutional Modules),该模块可以利用上下文信息生成不同大小的卷积核,自适应地学习图片的语义信息。该模型在Cityscapes验证集上mIOU为79.64%,本次复现的mIOU为79.76%,该算法已被P
作者:王浩 这篇文章的核心内容是讲解如何使用FCN实现图像的语义分割。在文章的开始,我们讲了一些FCN的结构和优缺点。然后,讲解了如何读取数据集。接下来,告诉大家如何实现训练。最后,是测试以及结果展示。希望本文能给大家带来帮助。FCN对图像进行像素级的分类,从而解决了语义级别的图像分割(semantic segmentation)问题。与经典的CNN在卷积层之后使用全连接层得到固定长度的特征向量
可靠性确实重要:端到端弱监督的语义分割方法(AAAI2020)摘要弱监督语义分割只将图像级信息作为训练的监督,而产生像素级的预测。大多数目前的SOTA方法主要使用两步解决方案:1)学习生成伪像素级掩码,2)使用FCNs用伪掩码训练语义分割网络。然而,两步法在制作高质量的掩码时,往往需要大量的附加调价,使得这种方法复杂且不美观。在本文的工作中,我们利用图像级标签来产生可靠的像素级注释,并设计一个完整
语义分割算法汇总  记录一下各类语义分割算法,便于自己学习。   由DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation开始,在文章中,作者说明了在Cityscapes test set上各类模型的表现。如下图所示: 主流算法在PASCAL VOC2012数据集上的效果对比。1.DFANet  文章梳理了语义分割
转载 2023-08-21 22:59:14
167阅读
一、IOU--目标检测我们先来看下IOU的公式:现在我们知道矩形T的左下角坐标(X0,Y0),右上角坐标(X1,Y1);  矩形G的左下角坐标(A0,B0),右上角坐标(A1,B1)这里我们可以看到 和 在确定坐标而不确定两个矩形是否相交的情况下,为已知的常量.所以,我们只需要求解就行这里我们先来看一下水平方向上的情况: 从上述的三种情况中我们可以看出:&n
目前遇到的loss大致可以分为四大类:基于分布的损失函数(Distribution-based),基于区域的损失函数(Region-based,),基于边界的损失函数(Boundary-based)和基于复合的损失函数(Compounded)。 一、基于分布的损失函数1.1 cross entropy loss像素级别的交叉熵损失函数可以说是图像语义分割任务的最常用损失函数,这种损失会逐个检查每个
  近年来,智能驾驶越来越炙手可热。智能驾驶相关技术已经从研发阶段逐渐转。向市场应用。其中,场景语义分割技术可以为智能车提供丰富的室外场景信息,为智能车的决策控制提供可靠的技术支持,并且其算法鲁棒性较好,因此场景语义分割算法在无人车技术中处于核心地位,具有广泛的应用价值。  本周对经典的图像分割算法FCN进行论文解读。(Fully Convolutional Networks
写在前面:因为最近在做裂缝检测,用的CRACK500数据集,尺寸大部分是640*340,如果直接resize(512,512)效果不太好。尝试如下:1、先将340尺寸填充成512 (512是你需要的尺寸)2、因为mask标签图片需要为单通道的二值图像,填充后可能会变成RGB图像,所以再改为二值图像3、随机裁剪,这个是我自己设计的算法,大概思想是根据你需要的尺寸,我先限定一个x和y可能的区域,再通过
注:在本文中经常会提到输出数据的维度,为了防止读者产生错误的理解,在本文的开头做一下说明。 如上图,原始图像大小为5*5,经过一次卷积后,图像变为3*3。那就是5*5的输入,经过一个卷积层后,输出的维度变为3*3,再经过一个卷积层,输出的维度变为1*1,这里的5*5,3*3和1*1即为本文提到的数据的维度。1、什么是语义分割图像语义分割可以说是图像理解的基石性技术,在自动驾驶系统(具体为街景识别
在cv领域,会经常见到“语义分割”、“实例分割”这两个名词,本文就来解释下他们分别是什么意思,又有什么区别。目录语义分割和实例分割语义分割实例分割总结语义分割和实例分割在开始这篇文章之前,我们得首先弄明白,什么是图像分割?我们知道一个图像只不过是许多像素的集合。图像分割分类是对图像中属于特定类别的像素进行分类的过程,属于pixel-wise即像素级别的下游任务。因此图像分割简单来说就是按像素进行分
语义分割是深度学习中的一个重要应用领域。自Unet提出到现在已经过去了8年,期间有很多创新式的语义分割模型。简单的总结了Unet++、Unet3+、HRNet、LinkNet、PSPNet、DeepLabv3、多尺度attention、HarDNet、SegFormer、SegNeXt等10个语义分割模型的基本特性。并对这些模型的创新点进行分类汇总。1、拓扑结构改进1.1 UNet++相比于une
  • 1
  • 2
  • 3
  • 4
  • 5