• Task1:赛题理解与 baseline(3 天)
    – 学习主题:理解赛题内容解题流程
    – 学习内容:赛题理解、数据读取、比赛 baseline 构建
    – 学习成果:比赛 baseline 提交
  • Task2:数据扩增方法(3 天)
    – 学习主题:语义分割任务中数据扩增方法
    – 学习内容:掌握语义分割任务中数据扩增方法的细节和使用
    – 学习成果:数据扩增方法的实践
  • Task3:网络模型结构发展(3 天)
    – 学习主题:掌握语义分割模型的发展脉络
    – 学习内容: FCN、 Unet、 DeepLab、 SegNet、 PSPNet
    – 学习成果:多种网络模型的搭建
  • Task4:评价函数与损失函数(3 天)
    – 学习主题:语义分割模型各种评价函数与损失函数
    – 学习内容: Dice、 IoU、 BCE、 Focal Loss、 Lovász-Softmax
    – 学习成果:评价/损失函数的实践
  • Task5:模型训练与验证(3 天)
    – 学习主题:数据划分方法
    – 学习内容:三种数据划分方法、模型调参过程
    – 学习成果:数据划分具体操作
  • Task6:分割模型模型集成(3 天)
    – 学习主题:语义分割模型集成方法
    – 学习内容: LookaHead、 SnapShot、 SWA、 TTA
    – 学习成果:模型集成思路


Task6:分割模型模型集成

  • 1 学习目标
  • 2 集成学习方法
  • 3 深度学习中的集成学习
  • 3.1 Dropout
  • 3.2 TTA
  • 3.3 Snapshot
  • 4 本章小节


在上一章我们学习了如何构建验证集,如何训练和验证。本章作为本次赛题学习的最后一章,将会讲解如何使用集成学习提高预测精度。

本章讲解的知识点包括:集成学习方法、深度学习中的集成学习和结果后处理思路。

1 学习目标

  • 学习集成学习方法以及交叉验证情况下的模型集成
  • 学会使用深度学习模型的集成学习

2 集成学习方法

在机器学习中的集成学习可以在一定程度上提高预测精度,常见的集成学习方法有Stacking、Bagging和Boosting,同时这些集成学习方法与具体验证集划分联系紧密。

由于深度学习模型一般需要较长的训练周期,如果硬件设备不允许建议选取留出法,如果需要追求精度可以使用交叉验证的方法。

下面假设构建了10折交叉验证,训练得到10个语义分割模型。

文本语义分割 语义分割tta_人工智能


那么在10个CNN模型可以使用如下方式进行集成:

  • 对预测的结果的概率值进行平均,然后解码为具体字符;
  • 对预测的字符进行投票,得到最终字符;

3 深度学习中的集成学习

此外在深度学习中本身还有一些集成学习思路的做法,值得借鉴学习:

3.1 Dropout

Dropout可以作为训练深度神经网络的一种技巧。在每个训练批次中,通过随机让一部分的节点停止工作。同时在预测的过程中让所有的节点都起作用。

文本语义分割 语义分割tta_python_02


Dropout经常出现在CNN网络中,可以有效的缓解模型过拟合的情况,也可以在预测时增加模型的精度。

3.2 TTA

测试集数据扩增(Test Time Augmentation,简称TTA)也是常用的集成学习技巧,数据扩增不仅可以在训练时候用,而且可以同样在预测时候进行数据扩增,对同一个样本预测三次,然后对三次结果进行平均。

文本语义分割 语义分割tta_人工智能_03

for idx, name in enumerate(tqdm_notebook(glob.glob('./test_mask/*.png')[:])):
    image = cv2.imread(name)
    image = trfm(image)
    with torch.no_grad():
        image = image.to(DEVICE)[None]
        score1 = model(image).cpu().numpy()
        
        score2 = model(torch.flip(image, [0, 3]))
        score2 = torch.flip(score2, [3, 0]).cpu().numpy()

        score3 = model(torch.flip(image, [0, 2]))
        score3 = torch.flip(score3, [2, 0]).cpu().numpy()
        
        score = (score1 + score2 + score3) / 3.0
        score_sigmoid = score[0].argmax(0) + 1

3.3 Snapshot

本章的开头已经提到,假设我们训练了10个CNN则可以将多个模型的预测结果进行平均。但是加入只训练了一个CNN模型,如何做模型集成呢?

在论文Snapshot Ensembles中,作者提出使用cyclical learning rate进行训练模型,并保存精度比较好的一些checkopint,最后将多个checkpoint进行模型集成。

文本语义分割 语义分割tta_人工智能_04


由于在cyclical learning rate中学习率的变化有周期性变大和减少的行为,因此CNN模型很有可能在跳出局部最优进入另一个局部最优。在Snapshot论文中作者通过使用表明,此种方法可以在一定程度上提高模型精度,但需要更长的训练时间。

文本语义分割 语义分割tta_python_05

4 本章小节

在本章中我们讲解了深度学习模型做集成学习的各种方法,并以此次赛题为例讲解了部分代码。以下几点需要同学们注意

  • 集成学习只能在一定程度上提高精度,并需要耗费较大的训练时间,因此建议先使用提高单个模型的精度,再考虑集成学习过程;
  • 具体的集成学习方法需要与验证集划分方法结合,Dropout和TTA在所有场景有可以起作用。
  • 使用交叉验证训练模型,得到多个模型权重;
  • 学习Snapshot和TTA的具体用法;