本次模式识别课程要求实现路标检测,训练集只给了5个样本,测试集有50个样本,听说HOG特征+特征匹配就能达到很好的效果,因此采用了这种方法。在python-opencv里,有定义了一个类cv2.HOGDescriptor,使用这个类就可以直接提取图片的HOG特征。图片没有要求,3通道和单通道的我试一下结果一样。 网上关于这个类的介绍很少,翻了好多内容才找到了一部分。首先来看一下如何直接使用构造函数
OpenCV中给出了很多种提取对象特征的方法。 从简单的图像色块>图像阈值分割>轮廓查找>特征点检测>直方图检测等等有很多。这些简单的方法看似没有什么实际的场景可以直接拿来使用,但是就学习的时候拿来学习学习是非常恰当的。 下面就按照颜色阈值的方式来查找图像中的蓝色物体,提取出对象的掩膜并进行覆盖。色域转换通常情况下,摄像机直接采集到的图像是RGB色域的(在Opencv中三通
一、目标:将图像中我们需要的部分提取出,进行扫描,提取出其中的文字。二、思路:首先我们要定位我们在图像中需要的部分,将其轮廓提取出。 - 1将图像变换大小 - 2灰度化,高斯滤波,边缘检测 - 3轮廓提取 - 4筛选第三步中的轮廓,选择其中较大的 - 5绘制轮廓的近似,返回其中有四个点的轮廓image = cv2.imread(args["image"])
ratio = image.shape[
OpenCV数字图像处理之ROI区域的提取利用mask(掩模)技术提取纯色背景图像ROI区域中的人和物,并将提取出来的人或物添加在其他图像上。1、实现原理先通过cv.cvtColor()函数,将原RGB彩色图像转换为hsv色彩空间的图像,然后通过cv.inRange()函数获得ROI区域的Mask,最后利用cv.bitwise()函数提取得到ROI区域。2、使用的函数简述(1) cv.cvtCol
转载
2023-08-14 20:16:31
424阅读
引言 当我们通过阈值分割提取到图像中的目标物体后,我们就需要通过边缘检测来提取目标物体的轮廓,使用这两种方法基本能够确定物体的边缘或者前景。接下来,我们通常需要做的是拟合这些边缘的前景,如拟合出包含前景或者边缘像素点的最小外包矩形、圆、凸包等几何形状,为计算它们的面积或者模板匹配等操作打下坚实的基础。
转载
2023-10-19 09:03:29
667阅读
一、准备OpenCV 4.1.0 mingw 7.3 自编译版(Windows 10下Qt 5.12.3 mingw7.3.0 编译OpenCV 4.1.0 + 编译结果库文件_幽迷狂的博客)Qt 5.12.4二、前提公司给出题目提取下面图片中中间的部分,并绘出拟合曲线。三、开发3.1 灰度化图像代码:cv::Mat grayImage(Mat srcImage)
{
Mat grayIma
转载
2023-08-25 13:31:22
311阅读
案例 ©Fu Xianjun. All Rights Reserved.一、读取图像知识储备:图像分割与提取的概念 在图像处理的过程中, 经常需要从图像中将前景对象作为目标图像提取出来。例如无人驾驶技术, 我们关心的是周围的交通工具, 其他障碍物等, 而对于背
转载
2023-09-26 22:26:55
225阅读
关于图片处理,经常遇到的一个问题是如何获取roi区域(说白了就是抠图),并对roi区域赋值,比如说赋值成黑色。首先,关于如何获取roi区域,opencv的Mat类中提供了两种方法。代码如下:Mat operator() (Range rowRange, Range colRange) const
Mat operator() (const Rect &roi) const上述两种
转载
2023-10-19 17:08:31
236阅读
opencv中提供findContours()函数来寻找图像中物体的轮廓,并结合drawContours()函数将找到的轮廓绘制出。首先看一下findContours(),opencv中提供了两种定义形式官网:https://docs.opencv.org/3.3.1/d3/dc0/group__imgproc__shape.html#ga17ed9f5d79ae97bd4c7cf18403e16
转载
2023-08-13 10:07:08
308阅读
利用霍夫变换提取矩形的角点坐标背景:一张图包含矩形,要提取其中矩形的角点。思路:对图片进行概率霍夫变换线变换,再筛选出特定矩形的边,求两个边的直线角点流程:边缘检测,得到边缘二值图像概率霍夫线变换HoughLinesP()设定矩形边界从直线中筛选出矩形的边并绘制求矩形边的交点并绘制代码:主函数文件//-------------------------------------------------
1 初识轮廓目标 • 理解什么是轮廓 • 学习找轮廓,绘制轮廓等 • 函数: cv2.findContours(), cv2.drawContours() 1.1 什么是轮廓 轮廓可以简单认为成将连续的点(连着边界)连在一起的曲线,具有相同的颜色或者灰度。轮廓在形状分析和物体的检测和识别中很有用。 • 为了更加准确,要使用二值化图像。在寻找轮廓之前,要进行阈值化处理或者 Canny 边界
转载
2023-09-27 11:33:37
876阅读
文章目录一、前言二、代码实现二、算法改进一、前言本文探讨图像阴影部分提取,借鉴【博主】思想,处理图像:图像处理都是光照
原创
2020-08-23 10:39:24
679阅读
表格提取的OpenCV-python实现
原创
2022-08-26 10:34:22
691阅读
# 使用 Python 和 OpenCV 实现骨架提取
骨架提取是图像处理中的一种技术,用于简化图像中的形状,保留其结构特征。在本文中,我们将用 Python 和 OpenCV 实现这一过程。以下是整个流程的概述,以及详细的代码实现和注释。
## 流程概述
在开始之前,我们先来看一下骨架提取的基本流程,以下表格展示了每一步的目标及其描述:
| 步骤 | 目标
# Python Opencv 提取边缘
## 导言
图像处理是计算机视觉领域中的重要技术之一,而提取图像的边缘是图像处理中的一个基本操作。在Python中,我们可以使用Opencv库来实现图像的边缘提取。本文将介绍如何使用Opencv库来提取图像的边缘,并给出代码示例。
## Opencv库简介
Opencv是一个用于计算机视觉和机器学习的开源库,它提供了丰富的图像处理和计算机视觉算法,
# opencv骨架提取python
## 1. 引言
在计算机视觉领域,骨架提取是一种常用的图像处理技术。通过骨架提取,我们可以将图像中的对象缩减为其主要轮廓,以便进行形状分析、目标识别等应用。OpenCV是一个广泛使用的开源计算机视觉库,它提供了许多强大的图像处理函数和工具。本文将介绍如何使用OpenCV库中的函数来进行骨架提取,并给出相应的Python代码示例。
## 2. 骨架提取的
原创
2023-10-18 13:47:14
930阅读
# OpenCV边缘提取技术与Python实现
边缘提取是计算机视觉中的一个重要任务,它能够帮助我们识别图像中的重要特征和轮廓。OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉库,为图像处理提供了丰富的工具和函数。在这篇文章中,我们将探讨如何使用Python与OpenCV进行边缘提取,并提供简单的代码示例来帮助理解。
## 边缘提取的
总结一下轮廓提取函数:C++: void findContours // 提取轮廓,用于提取图像的轮廓
(
InputOutputArray image, // 输入图像,必须是8位单通道图像,并且应该转化成二值图像
OutputArrayOfArrays contours, // 检测到的轮廓,每个轮廓被表示成一个Point向量
OutputArray hiera
本篇文章通过调用opencv里的函数简单的实现了对图像里特定颜色提取与定位,以此为基础,我们可以实现对特定颜色物体的前景分割与定位,或者特定颜色线条的提取与定位 主要步骤:将RGB图像转化为HSV,H表示色调(度数表示0-180),S表示饱和度(取值0-255),V表示亮度(取值0-255),不同的颜色有着不同的取值范围,一般给出如下:设定待提取颜色的HSV范围值,然后调用inRange函数实现对
转载
2023-10-20 14:31:45
0阅读
前言耐心看完一定会有收获的,大部分内容也会在代码中体现,结合理论知识和代码进行理解会更有效。代码用opencv4.5.1(c++)版实现一、边缘检测算法边缘检测算法是指利用灰度值的不连续性质,以灰度突变为基础分割出目标区域。对铝铸件表面进行成像后会产生一些带缺陷的区域,这些区域的灰度值比较低,与背景图像相比在灰度上会有突变,这是由于这些区域对光线产生散射所引起的。因此边缘检测算子可以用来对特征的提
转载
2023-07-04 19:57:52
534阅读