目录1 配置环境变量2 运行官方的 MapReduce 任务3 自定义HBase-MR 【前言】 在Hadoop中MR使用HBase,需要将HBase的jar包添加到Hadoop的类路径下,所以需要修改配置文件添加类路径。这源于一个思想: A要使用 B,那么A要有B的jar包。例如:在 Hive的安装中,Hive需要使用到MySQL数据库,所以将jdbc驱动包放到lib文件夹中 HBase与M
一、MapReduce概述MapReduce是大数据离线计算的一种处理范式。它的基本概念就是“分而治之”:将单个问题分解成多个独立的子任务,再将子任务的结果汇聚成最终结果。在 MapReduce 中,它会先把样本分成一段段能够令单台计算机处理的规模,然后让多台计算机同时进行各段样本的整理和统计,每执行完一次统计就对映射统计结果进行规约处理,最终完成大规模的数据规约。MapReduce 的含义分为两
文章目录hbaseMapreduce集成整合在hadoop中运行jar包小案例hbase import TSVhbase import CSVrowkey的热点与表的设计原则热点原理rowkey长度限制rowkey的设计原则 hbaseMapreduce集成整合在公司的实际开发中, 在多数情况下, 都是MapreduceHbase联合使用, 在Hbase中对于Hbase来说, 就是读和写的
转载 9月前
36阅读
主要参考文献有: http://wiki.apache.org/hadoop/Hbase/MapReduce Hbase源代码: IdentityTableMap.java TestTableMapReduce.java 如果是利用Mapreduce程序插入数据Hbase表 里,那wiki上的例子就基本可用跑通了(当然,前提是环境部署都没问题)。 如果是利用Mapreduce
转载 2010-06-10 08:43:16
4255阅读
目录一、前言准备工作二、HDFS——MapReduce操作11、Map阶段2、Reduce阶段3、Driver阶段4、结果查询三、HDFS——MapReduce操作21、Map阶段2、Reduce阶段3、Driver阶段4、结果查询一、前言        本篇文章主要分享,编写简单的hbasemapreduce集合的案例,即从
转载 2023-10-24 14:06:16
99阅读
       为了使用MapReduce任务来并行处理大规模HBase数据,HBaseMapReduce API进行了扩展:常用的HBase MapReduce API与Hadoop MapReduce API对应关系如下表 HBase MapReduce APIHadoop MapReduce APIorg.apache.hadoop.hbas
        对于Hadoop分布式文件系统本身来说,重要的出发点在于硬件故障是常态,不是非异常的状态,我们可以摒弃采用IBM小型机方案,Hadoop中数据可以自动复制,一份数据可以复制成三份,第一份在一台 服务器上,第二份数据在另外一台机架的另外一台服务器上,第三份数据
转载 10月前
60阅读
MapReducehdfs用于存储海量数据mapreduce则用于处理数据,是一种分布式计算模型。MapReduce的思想:将任务切割为多个小任务进行并行计算(Map),然后将得到的局部结果进行汇总(Reduce)。网络io的耗时远大于磁盘io。当计算程序和数据分别在不同机器上时,将计算程序移动到数据所在节点比移动数据要快的多。所以Hadoop中的MapReduce就是将计算程序发送到各个Dat
1、先看一个标准的hbase作为数据读取源和输出源的样例:View Code1 2 3 4 5 6 7 8Configuration conf = HBaseConfiguration.create(); Job job = new Job(conf, "job name "); job.setJarByClass(test.class); Scan scan = new Scan(); Tabl
转载 2023-08-08 21:38:14
271阅读
作业提交阶段对于每一种InputFormat都会提供两个方法: getSplits() 用来分片,一般来说对于普通的文件,是每个Block一个分片;不同的输入数据类型有完全不同的分片方法。 createRecordReader() 用来提供RecordReader对于输入的数据首先就是要分片,每一片对应着一个Mapper,Mapper数量总是等于分片数,所以分片确定之后,Mapper数量也就定
前面4篇文章介绍了如何编写一个简单的日志提取程序,读取HDFS share/logs目录下的所有csv日志文件,然后提取数据后,最终输出到share/output目录下。本篇停留一下,梳理一下主要过程,然后提出新的改进目标。首先声明一下,所有的代码都是maven工程的,没有使用任何IDE。  这是我一贯的编程风格,用Emacs + JDEE开发。需要使用IDE的只需要学习如何在IDE中使
MapReduce-从HBase读取处理后再写入HBase 代码如下 打包测试 出现的问题 一开始使用额TableMapReduceUtil,但是报下面这个错 解决,不使用TableMapReduceUtil,分布设置便可解决此问题
原创 2022-06-10 20:05:11
468阅读
(1)scan.setCacheBlocks(false);初始化map任务    TableMapReduceUtil.initTableMapperJob 本次mr任务scan的所有数据不放在缓存中,一方面节省了交换缓存的操作消耗,可以提升本次mr任务的效率,另一方面,一般mr任务scan的数据都是 一次性或者非经常用到的,因此不需要将它们替换到缓存中,缓存中还是
1. join算法题如下:                                                    &nbsp
MapReduce是一种编程模型,使开发人员可以专注于编写处理数据的代码,而不必担心并行执行的细节。 MapReduce需要将要处理数据建模为键值对。 开发人员编写了map函数和reduce函数的代码。 MapReduce运行时为每个键/值对调用map函数。 映射功能将键值对作为输入,并产生另一个键值对的输出。 MapReduce运行时通过键对映射函数的输出进行排序和分组。 然后,它
HDFS之MapReduce(特别篇)1、MapReduce概述1、MapReduce定义 MapReduce是一个分布式运算程序的编程框架,是用户开发“基于Hadoop的数据分析应用”的核心框架。 MapReduce核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整分布式运算程序,并发运行在一个Hadoop集群上。2、MapReduce优点1、MapReduce易于编程 它简单的实现
转载 2023-11-07 05:58:48
48阅读
        使用Hadoop进行大数据运算,当数据量极其大时,那么对MapReduce性能的调优重要性不言而喻,尤其是Shuffle过程中的参数配置对作业的总执行时间影响特别大。下面总结一些和MapReduce相关的性能调优方法,主要从五个方面考虑:数据输入、Map阶段、Reduce阶段、Shuffle阶段和其他调优属性。  1.数据输入  在执行Map
方法介绍MapReduce 是一种计算模型,简单的说就是将大批量的工作(数据)分解(map)执行,然后再将结果合并成最终结果(reduce)。这样做的好处是可以在任务被分解后,通过大量机器进行分布式并行计算,减少整个操作的时间。也就是说,MapReduce 的原理就是一个归并排序。它的适用范围为数据量大,但是数据种类小可以放入内存的场景。基本原理及要点是将数据交给不同的机器去处理数据划分,结果归
Join关联操作背景在实际的数据库应用中,我们经常需要从多个数据表中读取数据,这时就可以使用SQL语句中的连接(JOIN),在两个或者多个数据表中查询数据。在使用MapReduce框架进行数据查询的过程中,也会涉及到从多个数据集中读取数据,进行Join关联操作,只不过此时需要使用Java代码并根据MapReduce的编程规范实现这个业务。由于MapReduce的分布式设计理念,对于MapReduc
什么是Map/Reduce?MapReduce是hadoop的核心组件之一,主要负责分布式计算Map/Reduce内部原理:MapReduce最重要的一个思想:分而治之,就是将负责的大任务分解成若干个小任务, 并行执行, 完成后在合并到一起,适用于大量复杂的任务处理场景,大规模数据处理场景.Map负责“分”,即把复杂的任务分解为若干个“简单的任务”来并行处理。可以进行拆分的前提是这些小任务可以并行
  • 1
  • 2
  • 3
  • 4
  • 5