文章目录一、决策树算法二、CART 决策树三、Java 代码实现3.1 TrainDataSet3.2 DataType3.3 PredictResult3.4 CartDecisionTree3.5 Run 一、决策树算法二、CART 决策树CART(classification and regression tree):又称为分类回归,从名字可以发现,CART既可用于分类,也可以用于回
# 决策树实现代码教程(Java) 在数据分析和机器学习中,决策树是一种非常直观且常用的算法。本文将向刚入行的小白详细介绍如何在Java实现一个简单的决策树。整个过程分为几个步骤,我将通过表格和代码示例逐步引导您了解。 ## 实现流程 | 步骤 | 描述 | | ---------- | ----------
原创 7月前
55阅读
在本博文中,我们将深入探讨如何用Java实现决策树代码,并且通过一系列图表和技术要素来清晰展现整个过程。决策树是一种基本的分类和回归方法,在数据挖掘与机器学习中被广泛应用。接下来,我们将从背景描述、技术原理、架构解析、源码分析、案例分析等方面进行详细阐述。 ### 背景描述 决策树是一种常见的分类算法,因其易于理解和解释而受到广泛应用。其主要优点在于能够通过简单的规则直观地进行分类决策。为了
文章目录前言1 决策树的基本流程2 决策树的属性划分2.1 信息增益(ID3算法)2.2 C4.5算法(信息增益比)2.3 CART算法(基尼指数)3 决策树的减枝处理4 决策树中的连续值和缺失值5 多变量的决策树6 sklearn中的决策树总结 前言决策树(decision tree):是一种基本的分类与回归方法,此处主要讨论分类的决策树。 但是对于决策树回归,跟决策树分类差不多,是在决策树
一、主类成员认识  我们概念讲解是在这里,下面便是成员变量。我们一点一点看,最后拉通走一遍。整个程序我是顺序运行的,给一个标题方便大家去找对应的方法public class ID3 { /** * 数据集 */ Instances dataset; /** * 这个数据集是纯的(只有一个标签)? */ boolean pure; /** * 决策类的数量. 二元分
转载 2023-11-22 17:18:07
47阅读
    本篇继续进阶一点,写一下 梯度提升决策树(Gradient Boosting Decision Tree)还是先上代码,梯度提升决策树是能够支持多种损失函数的,关于 损失函数的定义,老规矩,自己搜。既然要支持多种损失函数,因此先写个接口类,然后再来个实现,后面会用到损失函数接口类public interface LossFunction { publ
转载 2024-02-22 11:09:54
61阅读
决策树的分类过程和人的决策过程比较相似,就是先挑“权重”最大的那个考虑,然后再往下细分。比如你去看医生,症状是流鼻涕,咳嗽等,那么医生就会根据你的流鼻涕这个权重最大的症状先认为你是感冒,接着再根据你咳嗽等症状细分你是否为病毒性感冒等等。决策树的过程其实也是基于极大似然估计。那么我们用一个什么标准来衡量某个特征是权重最大的呢,这里有信息增益和基尼系数两个。ID3算法采用的是信息增益这个量。根据《统计
转载 2023-07-13 16:41:34
32阅读
先上问题吧,我们统计了14天的气象数据(指标包括outlook,temperature,humidity,windy),并已知这些天气是否打球(play)。如果给出新一天的气象指标数据:sunny,cool,high,TRUE,判断一下会不会去打球。table 1outlooktemperaturehumiditywindyplaysunnyhothighFALSEnosunnyhothighTR
GBDT 是一种 Boosting 类型的决策树,即在算法产生的众多中,前一棵的错误决定了后一棵的生成。我们先从最为简单的例子开始,一起来学习 GBDT 是如何构造的,然后结合理论知识,对算法的每个细节进行剖析,力求由浅入深的掌握该算法。我们的极简数据集由以下 3 条数据构成,使用它们来介绍 GBDT 的原理是再好不过了,假设我们用这些数据来构造一个 GBDT 模型,该模型的功能是:通过身高
说明:每个样本都会装入Data样本对象,决策树生成算法接收的是一个Array<Data>样本列表,所以构建测试数据时也要符合格式,最后生成的决策树的根节点,通过里面提供的showTree()方法可查看整个树结构,下面奉上源码。 Data.java package ai.tree.data; import java.util.HashMap; /** * 样本类
目录加载数据以文本的形式显示决策树规则决策树可视化关键参数可视化解释 加载数据from matplotlib import pyplot as plt from sklearn import datasets from sklearn.tree import DecisionTreeClassifier from sklearn import tree # Prepare the data
1 决策树自编程实现import numpy as np import pandas as pd import math import time from collections import namedtuple class Node(namedtuple("Node","children type content feature label")): # 孩子节点、分类特征的取值、节点内容、
转载 2023-07-19 15:38:52
206阅读
import java.util.HashMap; import java.util.HashSet; import java.util.LinkedHashSet; import java.util.Iterator; //调试过程中发现4个错误 ,感谢宇宙无敌的调试工具——print //1、selectAtrribute中的一个数组下标出错 2、两个字符串相等的判断 //3、输入的数据有一个
目录酱一、使用LibSVM制作鸢尾花数据集二、利用上述数据集实现模型训练并写出决策函数的数学公式三、总结 一、使用LibSVM制作鸢尾花数据集下载LibSVM 将下载的压缩文件解压如下:点击windows文件夹,在文件夹中找到名为svm-toy.exe的运行程序并运行。在程序运行框内点击鼠标左键就能打点,点击Change后能够换颜色,最后点击Save将数据保存为train.txt。在原有基础上再
作者:Rahul Saxena译者:java达人人工智能时代悄然而至,你可以继续安心地敲着代码,但必须对崭新的技术,陌生的算法保持高度的警惕和关注。    —— java达人              决策树算法属于监督学习算法系列。与其他监督学习算法不同,决策树算法也可用于求解关于回归和
决策树的分类过程和人的决策过程比较相似,就是先挑“权重”最大的那个考虑,然后再往下细分。比如你去看医生,症状是流鼻涕,咳嗽等,那么医生就会根据你的流鼻涕这个权重最大的症状先认为你是感冒,接着再根据你咳嗽等症状细分你是否为病毒性感冒等等。决策树的过程其实也是基于极大似然估计。那么我们用一个什么标准来衡量某个特征是权重最大的呢,这里有信息增益和基尼系数两个。ID3算法采用的是信息增益这个量。根据《统计
决策树的分类过程和人的决策过程比较相似,就是先挑“权重”最大的那个考虑,然后再往下细分。比如你去看医生,症状是流鼻涕,咳嗽等,那么医生就会根据你的流鼻涕这个权重最大的症状先认为你是感冒,接着再根据你咳嗽等症状细分你是否为病毒性感冒等等。决策树的过程其实也是基于极大似然估计。那么我们用一个什么标准来衡量某个特征是权重最大的呢,这里有信息增益和基尼系数两个。ID3算法采用的是信息增益这个量。根据《统计
# Java决策树:一种机器学习模型的介绍 决策树是机器学习中一种广泛应用的模型,主要用于分类和回归任务。它模拟人类决策的方式,通过一系列的简单决策形成树状结构,最终到达某个目标值。在本文中,我们将讨论决策树的基本概念、其工作原理、在Java中的具体实现,以及如何利用决策树进行数据分析。 ## 什么是决策树决策树是一种由节点和边组成的图形结构,每个节点代表一个决策点,而每条边代表决策的结
原创 10月前
21阅读
决策树代码Java实现是一项有趣又具有挑战性的任务。本篇博文将通过各个环节详细阐述如何在Java实现决策树,从环境准备到排错指南,逐步引领大家完成这一过程。 ## 环境准备 在开始编写决策树代码之前,我们需要准备相关的软硬件环境。以下是我们项目的基本要求。 ### 软硬件要求 - **操作系统**: Windows 10 / macOS / Linux - **Java版本**: JD
原创 6月前
27阅读
决策树决策树在周志华的西瓜书里面已经介绍的很详细了(西瓜书P73-P79),那也是我看过讲的最清楚的决策树讲解了,我这里就不献丑了,这篇文章主要是分享决策树代码。在西瓜书中介绍了三种决策树,分别为ID3,C4.5和CART三种决策树,三种出了分裂的计算方法不一样之外,其余的都一样,大家可以多看看书,如果有什么不清楚的可以看看我的代码决策树代码算是很简单的了,我有朋友面试的时候就被要求写决策
转载 2023-08-09 14:44:43
271阅读
  • 1
  • 2
  • 3
  • 4
  • 5