说明:每个样本都会装入Data样本对象,决策树生成算法接收的是一个Array<Data>样本列表,所以构建测试数据时也要符合格式,最后生成的决策树是树的根节点,通过里面提供的showTree()方法可查看整个树结构,下面奉上源码。

 

Data.java



package ai.tree.data;

import java.util.HashMap;

/**
 * 样本类
 * @author ChenLuyang
 * @date 2019/2/21
 */
public class Data implements Cloneable{
    /**
     * K是特征描述,V是特征值
     */
    private HashMap<String,String> feature = new HashMap<String, String>();

    /**
     * 该样本结论
     */
    private String result;

    public Data(HashMap<String,String> feature,String result){
        this.feature = feature;
        this.result = result;
    }

    public HashMap<String, String> getFeature() {
        return feature;
    }

    public String getResult() {
        return result;
    }

    private void setFeature(HashMap<String, String> feature) {
        this.feature = feature;
    }

    @Override
    public Data clone()
    {
        Data object=null;
        try {
            object = (Data) super.clone();
            object.setFeature((HashMap<String, String>) this.feature.clone());
        } catch (CloneNotSupportedException e) {
            e.printStackTrace();
        }

        return object;
    }
}



  

DecisionTree.java



package ai.tree.algorithm;

import ai.tree.data.Data;

import java.math.BigDecimal;
import java.util.*;

/**
 * @author ChenLuyang
 * @date 2019/2/21
 */
public class DecisionTree {
    /**
     * 递归构建决策树
     *
     * @param dataList 样本集合
     * @return ai.tree.algorithm.DecisionTree.TreeNode 使用传入样本构建的决策节点
     * @author ChenLuyang
     * @date 2019/2/21 16:05
     */
    public TreeNode createTree(List<Data> dataList) {
        //创建当前节点
        TreeNode<String, String, String> nowTreeNode = new TreeNode<String, String, String>();
        //当前节点的各个分支节点
        Map<String, TreeNode> featureDecisionMap = new HashMap<String, TreeNode>();

        //统计当前样本集中所有的分类结果
        Set<String> resultSet = new HashSet<String>();
        for (Data data :
                dataList) {
            resultSet.add(data.getResult());
        }

        //如果当前样本集只有一种类别,则表示不用分类了,返回当前节点
        if (resultSet.size() == 1) {
            String resultClassify = resultSet.iterator().next();

            nowTreeNode.setResultNode(resultClassify);

            return nowTreeNode;
        }

        //如果数据集中特征为空,则选择整个集合中出现次数最多的分类,作为分类结果
        if (dataList.get(0).getFeature().size() == 0) {
            Map<String, Integer> countMap = new HashMap<String, Integer>();
            for (Data data :
                    dataList) {
                Integer num = countMap.get(data.getResult());
                if (num == null) {
                    countMap.put(data.getResult(), 1);
                } else {
                    countMap.put(data.getResult(), num + 1);
                }
            }

            String tmpResult = "";
            Integer tmpNum = 0;
            for (String res :
                    countMap.keySet()) {
                if (countMap.get(res) > tmpNum) {
                    tmpNum = countMap.get(res);
                    tmpResult = res;
                }
            }

            nowTreeNode.setResultNode(tmpResult);

            return nowTreeNode;
        }

        //寻找当前最优分类
        String bestLabel = chooseBestFeatureToSplit(dataList);

        //提取最优特征的所有可能值
        Set<String> bestLabelInfoSet = new HashSet<String>();
        for (Data data :
                dataList) {
            bestLabelInfoSet.add(data.getFeature().get(bestLabel));
        }

        //使用最优特征的各个特征值进行分类
        for (String labelInfo :
                bestLabelInfoSet) {
            for (Data data :
                    dataList) {
            }
            List<Data> branchDataList = splitDataList(dataList, bestLabel, labelInfo);

            //最优特征下该特征值的节点
            TreeNode branchTreeNode = createTree(branchDataList);
            featureDecisionMap.put(labelInfo, branchTreeNode);
        }

        nowTreeNode.setDecisionNode(bestLabel, featureDecisionMap);

        return nowTreeNode;
    }

    /**
     * 计算传入数据集中的最优分类特征
     *
     * @param dataList
     * @return int 最优分类特征的描述
     * @author ChenLuyang
     * @date 2019/2/21 14:12
     */
    public String chooseBestFeatureToSplit(List<Data> dataList) {
        //目前数据集中的特征集合
        Set<String> futureSet = dataList.get(0).getFeature().keySet();

        //未分类时的熵
        BigDecimal baseEntropy = calcShannonEnt(dataList);

        //熵差
        BigDecimal bestInfoGain = new BigDecimal("0");
        //最优特征
        String bestFeature = "";

        //按照各特征分类
        for (String future :
                futureSet) {
            //该特征分类后的熵
            BigDecimal futureEntropy = new BigDecimal("0");

            //该特征的所有特征值去重集合
            Set<String> futureInfoSet = new HashSet<String>();
            for (Data data :
                    dataList) {
                futureInfoSet.add(data.getFeature().get(future));
            }

            //按照该特征的特征值一一分类
            for (String futureInfo :
                    futureInfoSet) {
                List<Data> splitResultDataList = splitDataList(dataList, future, futureInfo);

                //分类后样本数占总样本数的比例
                BigDecimal tmpProb = new BigDecimal(splitResultDataList.size() + "").divide(new BigDecimal(dataList.size() + ""), 5, BigDecimal.ROUND_HALF_DOWN);

                //所占比例乘以分类后的样本熵,然后再进行熵的累加
                futureEntropy = futureEntropy.add(tmpProb.multiply(calcShannonEnt(splitResultDataList)));
            }

            BigDecimal subEntropy = baseEntropy.subtract(futureEntropy);

            if (subEntropy.compareTo(bestInfoGain) >= 0) {
                bestInfoGain = subEntropy;
                bestFeature = future;
            }
        }

        return bestFeature;
    }

    /**
     * 计算传入样本集的熵值
     *
     * @param dataList 样本集
     * @return java.math.BigDecimal 熵
     * @author ChenLuyang
     * @date 2019/2/22 9:41
     */
    public BigDecimal calcShannonEnt(List<Data> dataList) {
        //样本总数
        BigDecimal sumEntries = new BigDecimal(dataList.size() + "");
        //香农熵
        BigDecimal shannonEnt = new BigDecimal("0");
        //统计各个分类结果的样本数量
        Map<String, Integer> resultCountMap = new HashMap<String, Integer>();
        for (Data data :
                dataList) {
            Integer dataResultCount = resultCountMap.get(data.getResult());
            if (dataResultCount == null) {
                resultCountMap.put(data.getResult(), 1);
            } else {
                resultCountMap.put(data.getResult(), dataResultCount + 1);
            }
        }

        for (String resultCountKey :
                resultCountMap.keySet()) {
            BigDecimal resultCountValue = new BigDecimal(resultCountMap.get(resultCountKey).toString());

            BigDecimal prob = resultCountValue.divide(sumEntries, 5, BigDecimal.ROUND_HALF_DOWN);
            shannonEnt = shannonEnt.subtract(prob.multiply(new BigDecimal(Math.log(prob.doubleValue()) / Math.log(2) + "")));
        }

        return shannonEnt;
    }

    /**
     * 根据某个特征的特征值,进行样本数据的划分,将划分后的样本数据集返回
     *
     * @param dataList 待划分的样本数据集
     * @param future   筛选的特征依据
     * @param info     筛选的特征值依据
     * @return java.util.List<ai.tree.data.Data> 按照指定特征值分类后的数据集
     * @author ChenLuyang
     * @date 2019/2/21 18:26
     */
    public List<Data> splitDataList(List<Data> dataList, String future, String info) {
        List<Data> resultDataList = new ArrayList<Data>();
        for (Data data :
                dataList) {
            if (data.getFeature().get(future).equals(info)) {
                Data newData = (Data) data.clone();
                newData.getFeature().remove(future);
                resultDataList.add(newData);
            }
        }

        return resultDataList;
    }

    /**
     * L:每一个特征的描述信息的类型
     * F:特征的类型
     * R:最终分类结果的类型
     */
    public class TreeNode<L, F, R> {
        /**
         * 该节点的最优特征的描述信息
         */
        private L label;

        /**
         * 根据不同的特征作出响应的决定。
         * K为特征值,V为该特征值作出的决策节点
         */
        private Map<F, TreeNode> featureDecisionMap;

        /**
         * 是否为最终分类节点
         */
        private boolean isFinal;

        /**
         * 最终分类结果信息
         */
        private R resultClassify;

        /**
         * 设置叶子节点
         *
         * @param resultClassify 最终分类结果
         * @return void
         * @author ChenLuyang
         * @date 2019/2/22 18:31
         */
        public void setResultNode(R resultClassify) {
            this.isFinal = true;
            this.resultClassify = resultClassify;
        }

        /**
         * 设置分支节点
         *
         * @param label              当前分支节点的描述信息(特征)
         * @param featureDecisionMap 当前分支节点的各个特征值,与其对应的子节点
         * @return void
         * @author ChenLuyang
         * @date 2019/2/22 18:31
         */
        public void setDecisionNode(L label, Map<F, TreeNode> featureDecisionMap) {
            this.isFinal = false;
            this.label = label;
            this.featureDecisionMap = featureDecisionMap;
        }

        /**
         * 展示当前节点的树结构
         *
         * @return void
         * @author ChenLuyang
         * @date 2019/2/22 16:54
         */
        public String showTree() {
            HashMap<String, String> treeMap = new HashMap<String, String>();
            if (isFinal) {
                String key = "result";
                R value = resultClassify;
                treeMap.put(key, value.toString());
            } else {
                String key = label.toString();
                HashMap<F, String> showFutureMap = new HashMap<F, String>();
                for (F f :
                        featureDecisionMap.keySet()) {
                    showFutureMap.put(f, featureDecisionMap.get(f).showTree());
                }
                String value = showFutureMap.toString();

                treeMap.put(key, value);
            }

            return treeMap.toString();
        }

        public L getLabel() {
            return label;
        }

        public Map<F, TreeNode> getFeatureDecisionMap() {
            return featureDecisionMap;
        }

        public R getResultClassify() {
            return resultClassify;
        }

        public boolean getFinal() {
            return isFinal;
        }
    }
}



  

Start.java



package ai.tree.algorithm;

import ai.tree.data.Data;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;

/**
 * @author ChenLuyang
 * @date 2019/2/22
 */
public class Start {
    /**
     * 构建测试样本集,测试样本如下:
     样本特征:{头发长短=短发, 身材=胖, 是否戴眼镜=有眼镜} 分类:男
     样本特征:{头发长短=长发, 身材=瘦, 是否戴眼镜=有眼镜} 分类:女
     样本特征:{头发长短=短发, 身材=胖, 是否戴眼镜=有眼镜} 分类:女
     样本特征:{头发长短=长发, 身材=胖, 是否戴眼镜=没眼镜} 分类:男
     样本特征:{头发长短=短发, 身材=瘦, 是否戴眼镜=没眼镜} 分类:男
     样本特征:{头发长短=长发, 身材=瘦, 是否戴眼镜=有眼镜} 分类:女
     样本特征:{头发长短=长发, 身材=胖, 是否戴眼镜=有眼镜} 分类:男
     * @author ChenLuyang
     * @date 2019/2/21 15:34
     * @return java.util.List<ai.tree.data.DecisionTreeTestData.Data> 样本集
     */
    public static List<Data> createDataList(){
        /**
         * 样本特征描述
         * @author ChenLuyang
         * @date 2019/2/22 18:55
         * @return java.util.List<ai.tree.data.Data>
         */
        String[] labels = new String[]{"是否戴眼镜", "头发长短", "身材"};

        List<Data> dataList = new ArrayList<Data>();

        HashMap<String,String> feature1 = new HashMap<String, String>();
        feature1.put(labels[0],"有眼镜");
        feature1.put(labels[1].toString(),"短发");
        feature1.put(labels[2].toString(),"胖");
        dataList.add(new Data(feature1,"男"));

        HashMap<String,String> feature2 = new HashMap<String, String>();
        feature2.put(labels[0],"有眼镜");
        feature2.put(labels[1],"长发");
        feature2.put(labels[2],"瘦");
        dataList.add(new Data(feature2,"女"));

        HashMap<String,String> feature3 = new HashMap<String, String>();
        feature3.put(labels[0],"有眼镜");
        feature3.put(labels[1],"短发");
        feature3.put(labels[2],"胖");
        dataList.add(new Data(feature3,"女"));

        HashMap<String,String> feature4 = new HashMap<String, String>();
        feature4.put(labels[0],"没眼镜");
        feature4.put(labels[1],"长发");
        feature4.put(labels[2],"胖");
        dataList.add(new Data(feature4,"男"));

        HashMap<String,String> feature5 = new HashMap<String, String>();
        feature5.put(labels[0],"没眼镜");
        feature5.put(labels[1],"短发");
        feature5.put(labels[2],"瘦");
        dataList.add(new Data(feature5,"男"));

        HashMap<String,String> feature6 = new HashMap<String, String>();
        feature6.put(labels[0],"有眼镜");
        feature6.put(labels[1],"长发");
        feature6.put(labels[2],"瘦");
        dataList.add(new Data(feature6,"女"));

        HashMap<String,String> feature7 = new HashMap<String, String>();
        feature7.put(labels[0],"有眼镜");
        feature7.put(labels[1],"长发");
        feature7.put(labels[2],"胖");
        dataList.add(new Data(feature7,"男"));

        return dataList;
    }

    public static void main(String[] args) {
        DecisionTree decisionTree = new DecisionTree();

        //使用测试样本生成决策树
        DecisionTree.TreeNode tree = decisionTree.createTree(createDataList());

        //展示决策树
        System.out.println(tree.showTree());
    }
}



  

生成树结构:{是否戴眼镜={没眼镜={result=男}, 有眼镜={身材={胖={头发长短={长发={result=男}, 短发={result=女}}}, 瘦={result=女}}}}}