对模型参数进行限制或者规范化能将一些参数朝着0收缩(shrink)。使用收缩的方法的效果提升是相当好的,岭回归(ridge regression,后续以ridge代称),lasso和弹性网络(elastic net)是常用的变量选择的一般化版本。弹性网络实际上是结合了岭回归lasso的特点。Lasso和Ridge比较Lasso的目标函数:Ridge的目标函数:ridge的正则化因子使用二阶范数,
特征选择*无效变量不相关变量,多余变量统计方式的特征选择方差阈值化、卡方检验、ANOVA检验及T检验、皮尔森相关系数高度相关特征选择(多余变量)模型方式的特征选择决策树、逻辑回归,随机森林,XGBoost模型会自动选择变量递归式的特征选择。将特征慢慢消除,限制到特定范围内。 当输入增加,就必须增加数据,不然模型就会不稳定,无效变量不相关变量,多余变量 Redundancy:两
1、LASSOLASSO全称least absolute shrinkage and selection operator,本身是一种回归方法。与常规回归方法不同的是,LASSO可以对通过参数缩减对参数进行选择,从而达到降维的目的。说到LASSO,就不得不说岭回归,因为LASSO就是针对岭回归不能做参数选择的问题提出来的。关于岭回归的解释,可以参照我的另一篇文章预测数值型数据:回归(二),这里不再
特征选择选择相关特征的子集用于机器学习模型构建的过程,数据越多,结果就越好,这并不总是事实。包含不相关的特征(对预测没有帮助的特征)和冗余的特征(与他人无关的特征)只会使学习过程不堪重负,容易导致过度拟合。 特征选择的好处:不同的特征子集为不同的算法提供了最佳性能。所以它和机器学习模型训练不是一个单独的过程。因此,如果我们要为线性模型选择特征,最好使用针对这些模型的选择程序,如回归系数
Ridge回归Lasso回归和弹性网回归目录Ridge回归Lasso回归弹性网回归在处理较为复杂的数据的回归问题时,普通的线性回归算法通常会出现预测精度不够,如果模型中的特征之间有相关关系,就会增加模型的复杂程度。当数据集中的特征之间有较强的线性相关性时,即特征之间出现严重的多重共线性时,用普通最小二乘法估计模型参数,往往参数估计的方差太大,此时,求解出来的模型就很不稳定。在具体取值上与真值有较
嵌入式选择:将特征选择嵌入到优化算法中,是隐式地选择LASSO:让算法逼迫一些属性的权重为0,即最小化,但实际上是通过最小化来近似实现。 这时,就有两个优化目标:一是原来的最小化损失函数;二是新增加的最小化,其形式同引入正则化得到的式子,而正则化又有助于降低过拟合的风险。 算法LASSO一举两得:降低过似合风险和得到“稀疏”解。嵌入式选择与正则化在有趣的距离与范数中,我们定义了等范数。 假定以
总结来说,加入特征缩减系数是为了减少影响系数小的特征,保留重要的特征。 1. 理论 概述: 通过对损失函数(即优化目标)加入惩罚项,使得训练求解参数过程中会考虑到系数的大小,通过设置缩减系数(惩罚系数),会使得影响较小的特征的系数衰减到0,只保留重要的特征。常用的缩减系数方法有lasso(L1正则化),岭回归(L2正则化)。 缩减系数的目的 2.1 消除噪声特征:如果模型考虑了一些不必要
线性回归-简单线性回归线性回归是一个解释性很强的模型,它可以告诉我们哪个因素对被预测变量影响最大,也可以给定因变量的不同组合来判断被预测量的值。在业务上,运营同学可能想知道增加流量、价格变动等对销量的影响,如果数据量足够支持模型训练,可以通过建立一个线性模型来形象描述。线性模型大类上我们简单分为简单线性回归模型和多元线性回归模型等。当然如果数据违背了线性回归的一些基本假设,也可以用ridge re
线性回归 import sklearn from sklearn.linear_model import LinearRegression X= [[0, 0], [1, 2], [2, 4]] y = [0, 1, 2] clf = LinearRegression() #fit_intercept=True #默认值为 True,表示计算随机变量, False 表示不计算随机变量 #no
实现功能:python实现Lasso回归分析(特征筛选、建模预测)输入结构化数据,含有特征以及相应的标签,采用Lasso回归特征进行分析筛选,并对数据进行建模预测。实现代码: import numpy as np import warnings warnings.filterwarnings(action='ignore') import pandas as pd import matplotl
目录1、 过滤法(Filter)1.1 方差选择法1.2 相关系数法1.3 卡方检验1.4 互信息法1.5 relief算法2、包裹法(Wrapper)2.1 递归特征消除法2.2 特征干扰法3、嵌入法(Embedded)3.1 基于惩罚项的特征选择法3.2 基于树模型的特征选择法4、机器学习中的特征选择和优缺点1、 过滤法(Filter)1.1 方差选择法  使用方差选择法,先要计算各个特征的方
————————————————————————————————————————————一、正则化背景监督机器学习问题无非就是“minimizeyour error while regularizing your parameters”,也就是在规则化参数的同时最小化误差。最小化误差是为了让我们的模型拟合我们的训练数据,而规则化参数是防止我们的模型过分拟合我们的训练数据。问题背景:参数太多,会导致
LASSO  在上一篇博客中介绍了岭回归这样一种模型正则化的方式,这篇博客主要介绍另一种模型正则化的方式 LASSO Regularization。  回顾一下岭回归的任务是:   其实 LASSO 的原理是和岭回归是一样的,只不过在怎么表达这个   这非常好理解,我们可以用 来代表 的大小,也可以用   那么 LASSO 是什么意思呢?Least Absolute Shrinkage an
文章目录基本概述岭回归Lasso回归 基本概述方法功能:可以视为逐步回归法的升级版,主要用于在回归模型中存在多重共线性时筛选自变量。方法原理:在一般回归模型的损失函数的基础上加上了正则项(惩罚项),两种回归的区别在于正则项不同。岭回归的惩罚项是回归系数的平方和;Lasso回归的惩罚项是回归系数的绝对值的和。其他作用:都可以对模型进行一定程度的简化,避免模型过于复杂。传统回归模型的四个假定:线性假
引言上一章我们介绍了如何进行基本的数据清洗工作。加下来我们来看看如何进行特征转换,学统计学的小伙伴一定知道什么是标准化,这其实就是一种特征转换,在一些模型中,特征转换是有必要的。(例如某些神经网络问题,使用特征转换可以收敛更快)?1.min-max缩放min-max缩放的基本思想是将所有的数据都转换到了某一固定区间,默认的是转换到0-1,其中最小的数据为0,最大的数据为1,变换公式如下:z=X−X
文章目录什么是特征收缩或者特征选择设置和数据加载线性回归(Linear Regression)偏差方差均衡最佳子集回归(Best Subset Regression)岭回归(Ridge Regression)LASSO弹性网(Elastic Net)最小角度回归(Least Angle Regression)主成分回归(Principal Components Regression)偏最小二乘法
Kaggle 网站(https://www.kaggle.com/)成立于 2010 年,是当下最流行的进行数据发掘和预测模型竞赛的在线平台。 与 Kaggle 合作的公司可以在网站上提出一个问题或者目标,同时提供相关数据,来自世界各地的计算机科学家、统计学家和建模爱好者, 将受领任务,通过比较模型的某些性能参数,角逐出优胜者。 通过大量的比赛,一系列优秀的数据挖掘模型脱颖而出,受到广大建模者的认
线性回归存在一个很重要的问题就是过拟合(overfitting)问题,所谓过拟合简单直白的说就是模型的训练误差极小,而检验误差很大。一个好的学习器不仅能够很好的拟合训练数据,而且能够对未知样本有很强的泛化能力,即低泛化误差。先来看看线性回归中的过拟合现象图中左边的图表示的线性回归模型存在欠拟合现象(underfitting),欠拟合顾名思义就是对训练数据的拟合程度不够好,训练误差大。中间的线性回归
好久没有更新啦,学业繁忙,不好意思呀!今天给大家分享得是cox单变量生存分析及Lasso变量选择实验目的:①掌握Cox单变量或多变量生存分析模型的原理及应用②掌握Cox模型的自适应Lasso变量选择实验原理:①Cox模型基本形式:②单因素cox,部分基因间的表达呈现共线性关系,导致构建的预后模型出现过度拟合。利用lasso的惩罚系数,过滤掉共线性因素,只保留最具有代表性的因素,用于构建预后模型(L
这一讲呢,给大家讲解一下lasso回归。目前这个方法还没有一个正规的中文名,如果从lasso这个单词讲的话,叫套索。那么套索是啥呢,就是套马脖子的东西,见下图: 就是拿这个东西把动物脖子套住,不要它随便跑。lasso 回归就是这个意思,就是让回归系数不要太大,以免造成过度拟合(overfitting)。所以呢,lasso regression是个啥呢,就是一个回归,并且回归系数不要太大。这个思想
  • 1
  • 2
  • 3
  • 4
  • 5