在上篇中,我们已经实现了lmdb的制作,实际上就是将训练和测试的图片的信息存放在Datum中,然后再序列化到lmdb文件中。上篇完成了数据的准备工作,而要跑通整个实验,还需要在data_layer.cpp中做一些相应的修改。data_layer.cpp中的函数实现了从lmdb中读取图片信息,先是反序列化成Datum,然后再放进Blob中。仔细想一下可以知道,因为原先caffe的data_layer
本文主要介绍多层感知器模型(MLP),它也可以看成是一种logister回归,输入层通过非线性转换,即通过隐含层把输入投影到线性可分的空间中。如果我们在中间加一层神经元作为隐含层,则它的结构如下图所示 ,其中 D和L为输入向量和输出向量f(x)的大小。    隐含层与输出层神经元的值通过激活函数计算出来,例如下图:如果我们选用sigmoid作为激活
摘要提出了一种基于波利亚-伽马数据扩增和诱导点的可扩展随机变分方法。与以往的方法不同,我们获得了基于自然梯度的封闭式更新,从而得到有效的优化。我们在包含多达 1100 万个数据点的真实数据集上评估了该算法,证明它比目前的状态快了两个数量级,同时就精度而言,它也具有竞争性。1、 介绍高斯过程(GPs)提供了一种流行的贝叶斯非线性非参数的回归和分类方法。由于 GPs 能够精确地适应数据,从而在提供良好
机器学习1. Logistic回归1.1 原理1.2 sklearn实现 1. Logistic回归1.1 原理Logistic回归是一种分类算法,通过将线性回归预测值映射到{0, 1}之间实现预测值到概率的转换;即根据数据集对分类边界线建立回归公式,以此进行分类。Logistic回归选择Sigmoid作为映射函数,其中Sigmoid函数及其导数如图:选择Sigmoid函数原因:在(-,+)区间
树的构建算法 CART(Classification And Regression Trees, 分类回归树)的树构建算法。该算法可以用来分类也可以用来回归。 树回归 原理原理概述为了构建以分段常数为叶节点的树,需要度量出数据的一致性。首先计算所有数据的均值,然后计算每条数据的值到均值的差值。为了对正负差值同等看待,一般用绝对值或者平方值来代替上述差值。 方差是平方误差的均值(
数据建模数据分析中,我们可能涉及复杂的场景,这时候需要对未知的样本数据进行预测,此时我们就需要建立模型完成。模型概念模型我们可以理解为一个函数。由训练得来的数据确定函书的参数,当参数确定好之后,然后进行训练,通俗点说的就是预测。通过训练数据,通过不断的进行训练,最终得到一个合适的模型,从而可以对位置的数据进行预测。监督学习监督学习是从标记的训练数据来推断一个功能的机器学习任务。训练数据包括一套训练
线性回归线性回归,就是能够用一个直线较为精确地描述数据之间的关系。这样当出现新的数据的时候,就能够预测出一个简单的值。线性回归中最常见的就是房价的问题。一直存在很多房屋面积和房价的数据,如下图所示:在这种情况下,就可以利用线性回归构造出一条直线来近似地描述放假与房屋面积之间的关系,从而就可以根据房屋面积推测出房价。线性回归模型通过线性回归构造出来的函数一般称之为了线性回归模型。线性回归模型的函数一
逻辑回归简介:逻辑回归主要处理分类问题,属于线性模型,模型表达能力有限需要构建深层次的特征。ps:在推荐模型里对LR改进著名的有FM和FFM模型增加了特征自组合出更高维度的特征来加强模型的表达。ps:FM(因子分解机)对模型的参数以及对应的特征进行分解来达到特征组合的目的。ps:FFM(场感知因子分解机)对FM引入了场的概念对FM的计算域进行了限定(只会跟其余场的特征进行计算),提高了计算速度。这
目录Lasso线性回归学习笔记(公式与代码实现)1 为什么要在线性回归中引入正则化项(简介)2 常见正则化项3 损失函数图像与正则化之后的图像3.1损失函数图像3.2 加了 L~1~ 正则项之后的损失函数图像4 L~1~ 范数正则化的解中有更多零的原因5 Lasso 线性回归6 Lasso线性回归的优化算法(求最优解)6.1 梯度下降(Gradient Descent)- 为什么梯度方向是函数上
《机器学习公式推导与代码实现》学习笔记,记录一下自己的学习过程,详细的内容请大家购买作者的书籍查阅。回归模型扩展目标变量通常有很多影响因素,通过各类影响因素构建对目标变量的回归模型,能够实现对目标的预测。但根据稀疏性的假设,即使影响一个变量的因素有很多,其关键因素永远只是少数。在这种情况下,还用传统的线性回归方法来处理的话,效果可能并不理想。下面介绍两种线性回归模型的拓展模型,分别是LASSO回归
一、算法概述逻辑回归(Logistic)虽带有回归二字,但它却是一个经典的二分类算法,它适合处理一些二分类任务,例如疾病检测、垃圾邮件检测、用户点击率以及上文所涉及的正负情感分析等等。首先了解一下何为回归?假设现在有一些数据点,我们利用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合的过程就称作回归。利用逻辑回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。线
线性回归模型损失函数最小二乘参数估计多元线性回归逻辑回归模型sigmoid函数极大似然估计损失函数梯度下降参考资料 注:本博客定义为学习笔记,为本人通过一些材料和书籍整理而来,或许会有些许心得体会。线性回归模型公式如下: f(x)=wx+b(0) (0)
问题引出: 当使用最小二乘法解决一下线性回归: 假设:已知x1,x2与y的关系服从线性回归模型: y=10+2x1+3x2+c 当x1和x2存在线性相关性时,使用最小二乘法来预测回归模型,就变得困难起来,因此物品们必须使用逐步回归。也就是先估计x1,或者x2。这就引出了岭回归!学习内容: 1、 岭回归系数 2、 3、 4、 岭回归系数: 当参数小于特征值时,参数矩阵不满秩,使用最小二乘法
多元线性和多项式回归上一个博客 我们说了一元线性回归,那么来看一下多元线性回归 一元函数的公式是而多元函数的公式: 其实就是相当于位置参数的变量都增多了,我们的解决办法依旧可以使用我们一元线性回归当中的代价函数和梯度下降算法。代价函数依旧是:梯度下降算法为: 我们可以看到,有多少个参数变量,我们就都给他构造出来,只是比一元线性回归中多一些参数直接上代码:先导入包:import numpy as n
1.其他术语概念(前提)随机森林我们可以理解为多个决策树组成的模型,但是如何组合,组合的方式是什么,我们就得知道集成学习的思想,bootstraping,bagging的概念。集成学习思想: 集成学习主要的作用是为了解决单个模型在运行时固有的缺陷,从而将多个单个模型组合到一起,取长补短,共同发挥功效。简单的理解人多力量大。随机森林就是这个思想下的产物。这里借用另一个博主的一张图可以更好的理解这个思
【笔记】逻辑回归一、介绍篇1.1什么是逻辑回归LR是Logistic Regression Classifier,本质上是线性回归,特殊之处在于特征到结果的映射中加入了一层逻辑函数g(z),即先把特征线性求和,然后使用函数**g(z)**作为假设函数来预测。g(z)可以将连续值映射到0 和1。逻辑回归使用的g(z)函数是sigmoid函数。因此逻辑回归=线性回归 + sigmoid。逻辑回归的表达
Logistic 回归 概述Logistic 回归 或者叫逻辑回归 虽然名字有回归,但是它是用来做分类的。其主要思想是: 根据现有数据对分类边界线(Decision Boundary)建立回归公式,以此进行分类。须知概念Sigmoid 函数回归 概念假设现在有一些数据点,我们用一条直线对这些点进行拟合(这条直线称为最佳拟合直线),这个拟合的过程就叫做回归。进而可以得到对这些点的拟合直线方程,那么
文章目录线性回归和岭回归、Lasso回归一、基础概念二、sklearn线性回归API三、线性回归实例(加州房价数据集分析流程)3.1 正规方程预测3.2 梯度下降预测3.3 岭回归3.4 Lasso回归 线性回归和岭回归、Lasso回归一、基础概念线性回归的本质就是:求解:是系数(coefficient),是特征值,是目标值(label)。目的是找到最小损失对应的W:通常有两种方法,一种是正规方
和里面的公式:...
机器学习:从公式推导到代码实现一元线性回归什么是线性回归求解过程代码实现 什么是线性回归我们有一个数据集D={(X1,Y1),(X2,Y2),(X3,Y3)…)},把这组数据可视化出来如图所示: 线性回归通俗易懂的说就是通过这些点中找到一条直线使这条直线到每个点的距离最小,我们在寻找这条直线的过程就叫做线性回归。图中点的横坐标也叫自变量,如果自变量的维度是1,那么就叫做一元线性回归(如(1,2,
  • 1
  • 2
  • 3
  • 4
  • 5