## Python 如何检测决策树模型准确率
### 问题背景
在机器学习中,决策树是一种常用的分类和回归算法。在实际应用中,我们通常需要评估决策树模型的准确率,以判断模型的好坏和可用性。本文将介绍如何使用 Python 来检测决策树模型的准确率,并以一个具体的分类问题为例进行演示。
### 问题描述
假设我们有一份乳腺癌数据集,其中包含了患者的一些特征信息,如年龄、肿块大小、肿块形状等,
原创
2023-08-26 12:29:36
694阅读
1、scikit-learn决策树算法库介绍scikit-learn决策树算法类库内部实现是使用了调优过的CART树算法,既可以做分类,又可以做回归。分类决策树的类对应的是DecisionTreeClassifier,而回归决策树的类对应的是DecisionTreeRegressor。本实例采用分类库来做。2、各环境安装我使用的是python3环境安装scikit-learn:pip3 insta
转载
2023-11-09 15:01:01
126阅读
在进行机器学习项目时,决策树是一种常用且直观的分类和回归模型。然而,模型的准确率是评估其有效性的关键指标之一。本文将详细记录如何在 Python 中优化决策树模型的准确率,涵盖环境配置、编译过程、参数调优、定制开发、调试技巧和性能对比等方面。
决策树模型的准确率的提升涉及多个步骤和技术,下面详细介绍这一过程。
```mermaid
flowchart TD
A[环境配置] --> B
决策树是一种基本的分类和回归模型,也就是说既可以用于分类也可以用于回归。这里以分类为例。 决策树的学习算法包含三个步骤:特征选择,决策树的生成,决策树的剪枝特征选择特征选择在于选取对训练数据具有较好分类能力的特征,如果选取的特征进行分类的结果与随机分类的结果没有很大的差别,那么就不能说这个特征具有很好的分类能力。从经验上来讲,扔掉这些特征,对决策树的学习在精度上不会有影响。 通常特征选择的准则我们
面向初学者的10行python代码,用于构建决策树并将其可视化 > Photo by Jessica Lewis on Unsplash 二十个问题是一款游戏,从本质上讲,您可以通过问20个"是/否"问题来猜测答案。 决策树是一种基于相同原理的算法。 它是一种机器学习方法,可让您根据一系列问题来确定所讨论对象属于哪个类别。Prateek Karkare的一篇非常不错的文章阐述了该算
转载
2023-12-27 11:12:05
56阅读
首先,树模型参数有:1. criterion gini or entopy
2. splitter best or random 前者是在所有特征中找到最好切分点,后者是在部分特征中(数据量比较大时)
3. max_features None(所有) log2,sqrt,N特征小于50时一般使用所有特征
4. max_depth 数据少或特征少的时候可以不管这个值,如果模型样本量、特征多的情况下,
转载
2023-08-29 19:05:09
198阅读
# 使用Python决策树求准确率的方案
在数据科学与机器学习的社区中,决策树广泛应用于分类和回归问题。决策树模型有助于处理复杂的数据集,并且其可解释性也使得结果易于理解。本文将以一个具体的分类问题为例,演示如何使用Python的决策树求准确率,并给出完整的代码示例。
## 问题背景
假设我们有一个关于鸢尾花数据集(Iris dataset),该数据集包含了多种鸢尾花的特征和种类。我们将使用
回归决策树1. 原理概述2. 算法描述3. 简单实例3.1 实例计算过程3.2 回归决策树和线性回归对比4. 小结 1. 原理概述上篇文章已经讲到,关于数据类型,我们主要可以把其分为两类,连续型数据和离散型数据。在面对不同数据时,决策树也 可以分为两大类型: 分类决策树和回归决策树。 前者主要用于处理离散型数据,后者主要用于处理连续型数据。不管是回归决策树还是分类决策树,都会存在两个核心问题:如何
转载
2024-03-19 10:08:54
108阅读
上一章主要描述了ID3算法的的原理,它是以信息熵为度量,用于决策树节点的属性选择,每次优选信息量最多的属性,以构造一颗熵值下降最快的决策树,到叶子节点处的熵值为0,此时每个叶子节点对应的实例集中的实例属于同一类。理想的决策树有三种:1.叶子节点数最少2.叶子加点深度最小3.叶子节点数最少且叶子节点深度最小。 在实际的操作中还会设计到ID3算法的收敛,过度拟合等问题下面依次进行
转载
2024-08-11 18:08:36
70阅读
用一行代码提升目标检测准确率 论文摘要非最大抑制(Non-maximum suppression, NMS)是物体检测流程中重要的组成部分。它首先基于物体检测分数产生检测框,分数最高的检测框M被选中,其他与被选中检测框有明显重叠的检测框被抑制。该过程被不断递归的应用于其余检测框。根据算法的设计,如果一个物体处于预设的重叠阈值之内,可能会导致检测不到该待检测物体。因此,我们提出了Soft-NMS算法
转载
2024-03-22 11:22:13
186阅读
机器学习之决策树(ID3)算法与Python实现 机器学习中,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。 数据挖掘中决策树是一种经常要用到的技术,可以用于分析数据,同样也
转载
2024-07-25 09:55:02
21阅读
背景与原理:决策树算法是在各种已知情况发生概率的基础上通过构成决策树来求某一事件发生概率的算法,由于这个过程画成图解之后很像一棵树形结构,因此我们把这个算法称为决策树。而在机器学习中,决策树是一种预测模型,代表对象属性和对象值之间的一种映射,一棵决策树的每个内部节点会处理数据的某个维度对应的变量,根据这个变量的取值向下进行分支,直到走到叶节点,每个叶节点代表输入对应的一个最终输出。决策树生成算法有
转载
2023-06-13 19:58:10
191阅读
决策树(Decision Tree)算法是一种基本的分类与回归方法,是最经常使用的数据挖掘算法之一。我们这章节只讨论用于分类的决策树。 决策树模型呈树形结构,在分类问题中,表示基于特征对实例进行分类的过程。它可以认为是 if-then 规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。 决策树学习通常包括 3 个步骤:特征选择、决策树的生成和决策树的修剪。2、决策树 场景场景1:一个
转载
2024-02-12 13:45:28
50阅读
决策数(Decision Tree)在机器学习中也是比较常见的一种算法,属于监督学习中的一种。看字面意思应该也比较容易理解,相比其他算法比如支持向量机(SVM)或神经网络,似乎决策树感觉“亲切”许多。优点:计算复杂度不高,输出结果易于理解,对中间值的缺失值不敏感,可以处理不相关特征数据。缺点:可能会产生过度匹配的问题。使用数据类型:数值型和标称型。简单介绍完毕,让我们来通过一个例子让决策树“原形毕
转载
2024-04-28 16:58:43
43阅读
本文介绍机器学习中决策树算法的python实现过程 共介绍两类方法: (1)亲手实习Python ID3决策树经典算法 (2)利用sklearn库实现决策树算法 关于决策树的原理,指路:机器学习 第四章决策树 文章目录(一)ID3决策树 Python实现(二)sklearn库决策树模型的应用 (一)ID3决策树 Python实现ID3决策树算法采用“最大化信息增益准则”。在树的构建过程中,采用了递
转载
2023-07-29 15:38:30
133阅读
这篇文章是《机器学习实战》(Machine Learning in Action)第三章 决策树算法的Python实现代码。1 参考链接机器学习实战2 实现代码2.1 treePlotter.pyimport matplotlib.pyplot as plt
desicionNode = dict(boxstyle='sawtooth', fc='0.8')
leafNode = dict(bo
转载
2023-06-14 13:57:19
302阅读
一、决策树不同算法信息指标:发展过程:ID3 -> C4.5 -> Cart;相互关系:ID3算法存在这么一个问题,如果某一个特征中种类划分很多,但是每个种类中包含的样本个数又很少,就会导致信息增益很大的情况,但是这个特征和结果之间并没有很大的相关性。所以这个特征就不是我们最终想优先决策的特征【这是ID3以信息增益作为指标的一个bug】,为了解决这个问题,引出信息增益率的概念,对应基于
转载
2023-11-20 11:40:20
83阅读
一棵树在现实生活中有许多枝叶,事实上树的概念在机器学习也有广泛应用,涵盖了分类和回归。在决策分析中,决策树可用于直观地决策和作出决策。决策树,顾名思义,一个树状的决策模型。尽管数据挖掘与机器学习中常常用到,本文将集中说明决策树及python的实现。如何将算法表示为树为此,让我们考虑一个非常基本的示例,该示例采用泰坦尼克号数据集(该数据机可直接在sklearn获得)。该模型使用数据集中的3个特征,即
转载
2023-08-30 19:04:32
167阅读
自然语言处理(ML),机器学习(NLP),信息检索(IR)等领域,评估(evaluation)是一个必要的工作,而其评价指标往往有如下几点:准确率(accuracy),精确率(Precision),召回率(Recall)和F1-Measure。本文将简单介绍其中几个概念。中文中这几个评价指标翻译各有不同,所以一般情况下推荐使用英文。 现在我先假定一个具体场景作为例子:假如某个班级有男生8
转载
2024-01-16 20:44:17
700阅读
1. 引言 决策树(decision tree)是一种基本的分类和回归方法,由于其采用的是一种树形的结构,因此,具有很强的解释性和计算速度,也正是因为这些特点,使得决策树在很多行业都得到了应用,比如风控行业等。决策树的建模过程一般分为三个步骤:特征选择、决策树的生成和决策树的剪枝,根据这三个步骤所采用的规则,衍生出了很多不同的模型,比较经典的有Quinlan在1986年提出的ID3算法和19
转载
2023-06-20 20:51:34
315阅读