决策树是一种基本的分类和回归模型,也就是说既可以用于分类也可以用于回归。这里以分类为例。 决策树的学习算法包含三个步骤:特征选择,决策树的生成,决策树的剪枝特征选择特征选择在于选取对训练数据具有较好分类能力的特征,如果选取的特征进行分类的结果与随机分类的结果没有很大的差别,那么就不能说这个特征具有很好的分类能力。从经验上来讲,扔掉这些特征,对决策树的学习在精度上不会有影响。 通常特征选择的准则我们
面向初学者的10行python代码,用于构建决策树并将其可视化 > Photo by Jessica Lewis on Unsplash 二十个问题是一款游戏,从本质上讲,您可以通过问20个"是/否"问题来猜测答案。 决策树是一种基于相同原理的算法。 它是一种机器学习方法,可让您根据一系列问题来确定所讨论对象属于哪个类别。Prateek Karkare的一篇非常不错的文章阐述了该算
转载
2023-12-27 11:12:05
56阅读
首先,树模型参数有:1. criterion gini or entopy
2. splitter best or random 前者是在所有特征中找到最好切分点,后者是在部分特征中(数据量比较大时)
3. max_features None(所有) log2,sqrt,N特征小于50时一般使用所有特征
4. max_depth 数据少或特征少的时候可以不管这个值,如果模型样本量、特征多的情况下,
转载
2023-08-29 19:05:09
198阅读
# 使用Python决策树求准确率的方案
在数据科学与机器学习的社区中,决策树广泛应用于分类和回归问题。决策树模型有助于处理复杂的数据集,并且其可解释性也使得结果易于理解。本文将以一个具体的分类问题为例,演示如何使用Python的决策树求准确率,并给出完整的代码示例。
## 问题背景
假设我们有一个关于鸢尾花数据集(Iris dataset),该数据集包含了多种鸢尾花的特征和种类。我们将使用
1、scikit-learn决策树算法库介绍scikit-learn决策树算法类库内部实现是使用了调优过的CART树算法,既可以做分类,又可以做回归。分类决策树的类对应的是DecisionTreeClassifier,而回归决策树的类对应的是DecisionTreeRegressor。本实例采用分类库来做。2、各环境安装我使用的是python3环境安装scikit-learn:pip3 insta
转载
2023-11-09 15:01:01
126阅读
在进行机器学习项目时,决策树是一种常用且直观的分类和回归模型。然而,模型的准确率是评估其有效性的关键指标之一。本文将详细记录如何在 Python 中优化决策树模型的准确率,涵盖环境配置、编译过程、参数调优、定制开发、调试技巧和性能对比等方面。
决策树模型的准确率的提升涉及多个步骤和技术,下面详细介绍这一过程。
```mermaid
flowchart TD
A[环境配置] --> B
## Python 如何检测决策树模型准确率
### 问题背景
在机器学习中,决策树是一种常用的分类和回归算法。在实际应用中,我们通常需要评估决策树模型的准确率,以判断模型的好坏和可用性。本文将介绍如何使用 Python 来检测决策树模型的准确率,并以一个具体的分类问题为例进行演示。
### 问题描述
假设我们有一份乳腺癌数据集,其中包含了患者的一些特征信息,如年龄、肿块大小、肿块形状等,
原创
2023-08-26 12:29:36
694阅读
回归决策树1. 原理概述2. 算法描述3. 简单实例3.1 实例计算过程3.2 回归决策树和线性回归对比4. 小结 1. 原理概述上篇文章已经讲到,关于数据类型,我们主要可以把其分为两类,连续型数据和离散型数据。在面对不同数据时,决策树也 可以分为两大类型: 分类决策树和回归决策树。 前者主要用于处理离散型数据,后者主要用于处理连续型数据。不管是回归决策树还是分类决策树,都会存在两个核心问题:如何
转载
2024-03-19 10:08:54
108阅读
上一章主要描述了ID3算法的的原理,它是以信息熵为度量,用于决策树节点的属性选择,每次优选信息量最多的属性,以构造一颗熵值下降最快的决策树,到叶子节点处的熵值为0,此时每个叶子节点对应的实例集中的实例属于同一类。理想的决策树有三种:1.叶子节点数最少2.叶子加点深度最小3.叶子节点数最少且叶子节点深度最小。 在实际的操作中还会设计到ID3算法的收敛,过度拟合等问题下面依次进行
转载
2024-08-11 18:08:36
70阅读
机器学习之决策树(ID3)算法与Python实现 机器学习中,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。 数据挖掘中决策树是一种经常要用到的技术,可以用于分析数据,同样也
转载
2024-07-25 09:55:02
21阅读
一、决策树不同算法信息指标:发展过程:ID3 -> C4.5 -> Cart;相互关系:ID3算法存在这么一个问题,如果某一个特征中种类划分很多,但是每个种类中包含的样本个数又很少,就会导致信息增益很大的情况,但是这个特征和结果之间并没有很大的相关性。所以这个特征就不是我们最终想优先决策的特征【这是ID3以信息增益作为指标的一个bug】,为了解决这个问题,引出信息增益率的概念,对应基于
转载
2023-11-20 11:40:20
83阅读
自然语言处理(ML),机器学习(NLP),信息检索(IR)等领域,评估(evaluation)是一个必要的工作,而其评价指标往往有如下几点:准确率(accuracy),精确率(Precision),召回率(Recall)和F1-Measure。本文将简单介绍其中几个概念。中文中这几个评价指标翻译各有不同,所以一般情况下推荐使用英文。 现在我先假定一个具体场景作为例子:假如某个班级有男生8
转载
2024-01-16 20:44:17
700阅读
决策树与随机森林决策树特征选择信息增益决策树代码实例决策树优缺点分析决策树的优点决策树的缺点集成方法(分类)之随机森林学习算法实例代码 决策树决策树模型呈树形结构。在分类问题中,表示基于特征对实例进行分类的过程,它可以认为是if-then规则的集合。在决策树的结构中,每一个实例都被一条路径或者一条规则所覆盖。通常决策树学习包括三个步骤:特征选择、决策树的生成和决策树的修剪优点:计算复杂度不高,输
转载
2024-07-14 19:09:19
43阅读
Python机器学习之-决策树篇决策树作为机器学习常用算法,更是作为集成学习的基础,不可谓不重要,在这里简单介绍决策树的原理及应用一:决策树原理顾名思义决策树是一个树状结构(由于算法的不同也决定了是二叉树还是多叉树,后面会详细描述),从根节点走向叶子节点,实际上决策树就相当于是if-else,便于理解,下图形象的展示了决策树的学习过程,从上到下的节点顺序代表了特征对结果的重要性顺序二:决策树的三种
转载
2024-03-04 17:00:39
18阅读
准确率:正确的数量除以总数量准确率(accuracy),是一个用来衡量分类器预测结果与真实结果差异的一个指标,越接近于1说明分类结果越准确。举个例子,比如现在有一个猫狗图片分类器对100张图片进行分类,分类结果显示有38张图片是猫,62张图片是狗,经与真实标签对比后发现,38张猫的图片中有20张是分类正确的,62张狗的图片中有57张是分类正确的,那么准确率是多少呢?显然就应该是 (20+57)/1
转载
2023-10-26 12:27:09
582阅读
1,决策树概念简介 不同的算法模型适合于不同类型的数据。首先,在了解树模型之前,自然想到树模型和线性模型有什么区别呢?其中最重要的是,树形模型是一个一个特征进行处理,之前线性模型是所有特征给予权重相加得到一个新的值。 决策树与逻辑回归的分类区别也在于此,逻辑回归是将所有特征变换为概率后,通过大于某一概率阈值的划分为一类,小于某一概率阈值的为另一类;而决策树是对每一个特征做一个划分。另外逻辑回归只能
转载
2024-01-15 08:48:43
59阅读
如图,为使用到的公式,信息熵表明样本的混乱程度,增益表示熵减少了,即样本开始分类,增益率是为了平衡增益准则对可取值较多的属性的偏好,同时增益率带来了对可取值偏小的属性的偏好,实际中,先用增益进行筛选,选取大于增益平均值的,然后再选取其中增益率最高的。以下代码纯粹手写,未参考其他人代码,如果问题,请不吝赐教。1,计算信息熵的函数import numpy as np
# 计算信息熵
# data:li
转载
2024-04-07 08:57:55
0阅读
在机器学习和深度学习的世界里,模型的性能评估是一个绕不开的话题。在这篇文章中,我们将讨论“准确率python”相关的问题,并深入探讨如何在Python中计算并优化模型的准确率。
以数据分类的模型为例,准确率是指正确预测的样本数占总样本数的比例。准确率的计算公式如下:
$$
Accuracy = \frac{TP + TN}{TP + TN + FP + FN}
$$
其中,$TP$ 是真正例
0、纳什系数NSE(Nash–Sutcliffe efficiency coefficient):用于评价模型质量的一个评价参数,一般用以验证水文模型模拟结果的的好坏,也可以用于其他模型。公式如下: 公式中Qo指观测值,Qm指模拟值,Qt(上标)表示第t时刻的某个值,Qo(上横线)表示观测值的总平均.E取值为负无穷至1,E接近1,表示模型质量好,模型可信度高;E接近0,表示模拟结果接近观测值的平均
Matplotlib优势:Matlab的语法、python语言、latex的画图质量(还可以使用内嵌的latex引擎绘制的数学公式) 本节课接着上一节课,来可视化决策树,用Matplotlib注解绘制树形图1 Matplotlib 注解Matplotlib提供了一个注解工具:annotations,可以在数据图形上添加文本工具。 Matplotlib实际上是一套面向对象的绘图库,它所绘制的图表
转载
2023-08-15 15:31:24
250阅读