spark
hive
import multiprocessing as mp from multiprocessing import Process class MyProcess(Process): """ 自定义多进程,
class DictToStruct: def __init__(self, **entries): self.__dict__.update(entries) struct = DictToStruct(
(b_datedays): day = datetime.timedelta(=) i (days): b_date + day * i
在OLAP多维分析中,Count Distinct(去重计数)是一种非常常用的指标度量,比如一段时间内的UV、活跃用户数等等;从1.5.3开始,Apache Kylin提供了两种Count Distinct计算方式,一种是近似的,一种是精确的,精确的Count Distinct指标在Build时候会消耗更多的资源(内存和存储),Build的过程也比较慢;近似Count DistinctApache
本文作者:李栋,来自Kyligence公司,也是Apache Kylin Committer & PMC member,在加入Kyligence之前曾就职于eBay、微软。1.Apache Kylin是什么? 在现在的大数据时代,越来越多的企业开始使用Hadoop管理数据,但是现有的业务分析工具(如Tableau,Microstrategy等)往往存在很大的局限,如难以水平扩展、
“麒麟出没,必有祥瑞。” —— 中国古谚语Kylin思维导图前言随着移动互联网、物联网等技术的发展,近些年人类所积累的数据正在呈爆炸式的增长,大数据时代已经来临。但是海量数据的收集只是大数据技术的第一步,如何让数据产生价值才是大数据领域的终极目标。Hadoop的出现解决了数据存储问题,但如何对海量数据进行OLAP查询,却一直令人十分头疼。企
前面的一篇文章——数据仓库的多维数据模型中已经简单介绍过多维模型的定义和结构,以及事实表(Fact Table)和维表(Dimension Table)的概念。多维数据模型作为一种新的逻辑模型赋予了数据新的组织和存储形式,而真正体现其在分析上的优势还需要基于模型的有效的操作和处理,也就是OLAP(On-line Analytical Processing,联机分析处理)。数据立方体 关于数据立
本文根据2016年4月北京Apache Kylin Meetup上的分享讲稿整理,略有删节。美团各业务线存在大量的OLAP分析场景,需要基于Hadoop数十亿级别的数据进行分析,直接响应分析师和城市BD等数千人的交互式访问请求,对OLAP服务的扩展性、稳定性、数据精确性和性能均有很高要求。本文主要介绍美团的具体OLAP需求,如何将Kylin应用到实际场景中,以及目前的使用方式和现状。同时也将Kyl
1. 从mysql查询出数据导入 txt 文件mysql -h 10.3.20.251 -u addata_r -P 3417 -pARreBOEhw9MijIEN_eP6BYKOxkTikUnl ad_data -e "select id, advertiser_id,date,cost,0 as cash_cost, 0 as reward_cost,
Copyright © 2005-2025 51CTO.COM 版权所有 京ICP证060544号