这些内容是从sqoop的官网整理出来的,是1.4.3版本的Document,如果有错误,希望大家指正。
1.使用sqoop导入数据
sqoop import --connect jdbc:mysql://localhost/db --username foo --table TEST
2.账号密码
sqoop import --connect jdbc:mysql://database.example.com/employees \
--username aaron --password 12345
3.驱动
sqoop import --driver com.microsoft.jdbc.sqlserver.SQLServerDriver \
--connect <connect-string> ...
4.写sql语句导入的方式
sqoop import \
--query 'SELECT a.*, b.* FROM a JOIN b on (a.id == b.id) WHERE $CONDITIONS' \
--split-by a.id --target-dir /user/foo/joinresults
如果是顺序导入的话,可以只开一个线程
sqoop import \
--query 'SELECT a.*, b.* FROM a JOIN b on (a.id == b.id) WHERE $CONDITIONS' \
-m 1 --target-dir /user/foo/joinresults
如果where语句中有要用单引号的,就像这样子写就可以啦"SELECT * FROM x WHERE a='foo' AND \$CONDITIONS"
5. 1.4.3版本的sqoop不支持复杂的sql语句,不支持or语句
6. --split-by <column-name>
默认是主键,假设有100行数据,它会执行那个SELECT * FROM sometable WHERE id >= lo AND id < hi,
with (lo, hi) 会分为4次导入(0,250),(250,500),(500,750),(750,1001)
如果这个字段不能达到实际的划分区域的效果,可以用别的字段。如果没有索引列或者是组合主键的表,需要手动设置一个划分列
7. --direct 是为了利用某些数据库本身提供的快速导入导出数据的工具,比如mysql的mysqldump
性能比jdbc更好,但是不知大对象的列,使用的时候,那些快速导入的工具的客户端必须的shell脚本的目录下
8.导入数据到hdfs目录,这个命令会把数据写到/shared/foo/ 目录
sqoop import --connnect <connect-str> --table foo --warehouse-dir /shared \
或者
sqoop import --connnect <connect-str> --table foo --target-dir /dest \
9.传递参数给快速导入的工具,使用--开头,下面这句命令传递给mysql默认的字符集是latin1
sqoop import --connect jdbc:mysql://server.foo.com/db --table bar \
--direct -- --default-character-set=latin1
10.转换为对象
--map-column-java <mapping> 转换为java数据类型
--map-column-hive <mapping> 转转为hive数据类型
11.增加导入
--check-column (col) Specifies the column to be examined when determining which rows to import.
--incremental (mode) Specifies how Sqoop determines which rows are new. Legal values for mode include append and lastmodified.
--last-value (value) Specifies the maximum value of the check column from the previous import.
增加导入支持两种模式append和lastmodified,用--incremental来指定
12.在导入大对象,比如BLOB和CLOB列时需要特殊处理,小于16MB的大对象可以和别的数据一起存储,超过这个值就存储在_lobs的子目录当中
它们采用的是为大对象做过优化的存储格式,最大能存储2^63字节的数据,我们可以用--inline-lob-limit参数来指定每个lob文件最大的限制是多少
如果设置为0,则大对象使用外部存储
13.分隔符、转移字符
下面的这句话
Some string, with a comma.
Another "string with quotes"
使用这句命令导入$ sqoop import --fields-terminated-by , --escaped-by \\ --enclosed-by '\"' ...
会有下面这个结果
"Some string, with a comma.","1","2","3"...
"Another \"string with quotes\"","4","5","6"...
使用这句命令导入$ sqoop import --optionally-enclosed-by '\"' (the rest as above)...
"Some string, with a comma.",1,2,3...
"Another \"string with quotes\"",4,5,6...
14.hive导入参数
--hive-home <dir> 重写$HIVE_HOME
--hive-import 插入数据到hive当中,使用hive的默认分隔符
--hive-overwrite 重写插入
--create-hive-table 建表,如果表已经存在,该操作会报错!
--hive-table <table-name> 设置到hive当中的表名
--hive-drop-import-delims 导入到hive时删除 \n, \r, and \01
--hive-delims-replacement 导入到hive时用自定义的字符替换掉 \n, \r, and \01
--hive-partition-key hive分区的key
--hive-partition-value <v> hive分区的值
--map-column-hive <map> 类型匹配,sql类型对应到hive类型
15.hive空值处理
sqoop会自动把NULL转换为null处理,但是hive中默认是把\N来表示null,因为预先处理不会生效的
我们需要使用 --null-string 和 --null-non-string来处理空值 把\N转为\\N
sqoop import ... --null-string '\\N' --null-non-string '\\N'
16.导入数据到hbase
导入的时候加上--hbase-table,它就会把内容导入到hbase当中,默认是用主键作为split列
也可以用--hbase-row-key来指定,列族用--column-family来指定,它不支持--direct。
如果不想手动建表或者列族,就用--hbase-create-table参数
17.代码生成参数,没看懂
--bindir <dir> Output directory for compiled objects
--class-name <name> Sets the generated class name. This overrides --package-name. When combined with --jar-file, sets the input class.
--jar-file <file> Disable code generation; use specified jar
--outdir <dir> Output directory for generated code
--package-name <name> Put auto-generated classes in this package
--map-column-java <m> Override default mapping from SQL type to Java type for configured columns.
18.通过配置文件conf/sqoop-site.xml来配置常用参数
<property>
<name>property.name</name>
<value>property.value</value>
</property>
如果不在这里面配置的话,就需要像这样写命令
sqoop import -D property.name=property.value ...
19.两个特别的参数
sqoop.bigdecimal.format.string 大decimal是否保存为string,如果保存为string就是 0.0000007,否则则为1E7
sqoop.hbase.add.row.key 是否把作为rowkey的列也加到行数据当中,默认是false的
20.例子
#指定列
$ sqoop import --connect jdbc:mysql://db.foo.com/corp --table EMPLOYEES \
--columns "employee_id,first_name,last_name,job_title"
#使用8个线程
$ sqoop import --connect jdbc:mysql://db.foo.com/corp --table EMPLOYEES \
-m 8
#快速模式
$ sqoop import --connect jdbc:mysql://db.foo.com/corp --table EMPLOYEES \
--direct
#使用sequencefile作为存储方式
$ sqoop import --connect jdbc:mysql://db.foo.com/corp --table EMPLOYEES \
--class-name com.foocorp.Employee --as-sequencefile
#分隔符
$ sqoop import --connect jdbc:mysql://db.foo.com/corp --table EMPLOYEES \
--fields-terminated-by '\t' --lines-terminated-by '\n' \
--optionally-enclosed-by '\"'
#导入到hive
$ sqoop import --connect jdbc:mysql://db.foo.com/corp --table EMPLOYEES \
--hive-import
#条件过滤
$ sqoop import --connect jdbc:mysql://db.foo.com/corp --table EMPLOYEES \
--where "start_date > '2010-01-01'"
#用dept_id作为分个字段
$ sqoop import --connect jdbc:mysql://db.foo.com/corp --table EMPLOYEES \
--split-by dept_id
#追加导入
$ sqoop import --connect jdbc:mysql://db.foo.com/somedb --table sometable \
--where "id > 100000" --target-dir /incremental_dataset --append
21.导入所有的表sqoop-import-all-tables
每个表都要有主键,不能使用where条件过滤
sqoop import-all-tables --connect jdbc:mysql://db.foo.com/corp
22.export
我们采用sqoop-export插入数据的时候,如果数据已经存在了,插入会失败
如果我们使用--update-key,它会认为每个数据都是更新,比如我们使用下面这条语句
sqoop-export --table foo --update-key id --export-dir /path/to/data --connect …
UPDATE foo SET msg='this is a test', bar=42 WHERE id=0;
UPDATE foo SET msg='some more data', bar=100 WHERE id=1;
...
这样即使找不到它也不会报错
23.如果存在就更新,不存在就插入
加上这个参数就可以啦--update-mode allowinsert
24.事务的处理
它会一次statement插入100条数据,然后每100个statement提交一次,所以一次就会提交10000条数据
25.例子
$ sqoop export --connect jdbc:mysql://db.example.com/foo --table bar \
--export-dir /results/bar_data
$ sqoop export --connect jdbc:mysql://db.example.com/foo --table bar \
--export-dir /results/bar_data --validate
$ sqoop export --connect jdbc:mysql://db.example.com/foo --call barproc \
--export-dir /results/bar_data